SOUNDPROOFING SOLUTIONS TECHNICAL MANUAL

- XYLOFON
- PIANO
- ALADIN
- SILENT FLOOR PUR
- SILENT FLOOR PE

Solutions for Building Technology

CONTENTS

XYLOFON 3
PIAND 99
ALADIN
SILENT FLOOR PUR 169
SILENT FLOOR PE 203

Solutions for Building Technology

CONTENTS

PRODUCT CHOICE AND DETERMINATION OF K
EUROPEAN TECHNICAL ASSESSMENT (ETA)
<i>XYLOFON 20.</i>
XYLOFON 35
XYLOFON 50
XYLOFON 70
XYLOFON 90
SUSTAINABILITY
THE CEN MODEL (EN ISO 12354)
DETERMINING THE VIBRATION REDUCTION INDEX K _{ij} IN TIM- BER STRUCTURES
THE SIMPLIFIED METHOD
FLANKSOUND PROJECT
MEASUREMENT CONFIGURATION
SOUND REDUCTION INDEX AND IMPACT SOUND LEVEL 62
ON SITE MEASUREMENTS
ACOUSTIC AND MECHANICAL INTERACTION
SHEAR AND TENSILE STRENGTH OF NINO AND TITAN SILENT CERTIFIED IN ETA90
MECHANICAL INTERACTION AND FRICTION
INFLUENCE OF MECHANICAL FASTENING USING STAPLES93
FIRE SAFETY IN MULTI-STOREY BUILDINGS94
XYLOFON AND FIRE

XYLOFON HIGH PERFORMANCE RESILIENT SOUNDPROOFING PROFILE

CODES AND DIMENSIONS

CODE	Shore	В	L	s	В	L	S	pcs
		[mm]	[m]	[mm]	[in]	[ft]	[in]	
XYL20050		50	3,66	6,0	2	12	1/4	1
XYL20080		80	3,66	6,0	3 1/8	12	1/4	1
XYL20090		90	3,66	6,0	3 1/2	12	1/4	1
XYL20100	20	100	3,66	6,0	4	12	1/4	1
XYL20120		120	3,66	6,0	4 3/4	12	1/4	1
XYL20140		140	3,66	6,0	5 1/2	12	1/4	1
XYL20160		160	3,66	6,0	6 1/4	12	1/4	1
XYL35080		80	3,66	6,0	3 1/8	12	1/4	1
XYL35090		90	3,66	6,0	3 1/2	12	1/4	1
XYL35100	75	100	3,66	6,0	4	12	1/4	1
XYL35120	55	120	3,66	6,0	4 3/4	12	1/4	1
XYL35140		140	3,66	6,0	5 1/2	12	1/4	1
XYL35160		160	3,66	6,0	6 1/4	12	1/4	1
XYL50080		80	3,66	6,0	3 1/8	12	1/4	1
XYL50090		90	3,66	6,0	3 1/2	12	1/4	1
XYL50100	50	100	3,66	6,0	4	12	1/4	1
XYL50120		120	3,66	6,0	4 3/4	12	1/4	1
XYL50140		140	3,66	6,0	5 1/2	12	1/4	1
XYL50160		160	3,66	6,0	6 1/4	12	1/4	1
XYL70080		80	3,66	6,0	3 1/8	12	1/4	1
XYL70090		90	3,66	6,0	3 1/2	12	1/4	1
XYL70100	70	100	3,66	6,0	4	12	1/4	1
XYL70120		120	3,66	6,0	4 3/4	12	1/4	1
XYL70140		140	3,66	6,0	5 1/2	12	1/4	1
XYL70160		160	3,66	6,0	6 1/4	12	1/4	1
XYL80080		80	3,66	6,0	3 1/8	12	1/4	1
XYL80090		90	3,66	6,0	3 1/2	12	1/4	1
XYL80100	80	100	3,66	6,0	4	12	1/4	1
XYL80120	_	120	3,66	6,0	4 3/4	12	1/4	1
XYL80140		140	3,66	6,0	5 1/2	12	1/4	1
XYL80160		160	3,66	6,0	6 1/4	12	1/4	1
XYL90080		80	3,66	6,0	31/8	12	1/4	1
XYL90090		90	3,66	6,0	3 1/2	12	1/4	1
XYL90100	90	100	3,66	6,0	4	12	1/4	1
XYL00140		140	3,66	6,0	4 5/4	12	1/4	
XYL90140		140	3,66	6,0	51/2	12	1/4	1
X1130100		100	3,66	6,0	01/4	12	1/4	1

SEPARATING PROFILE FOR TITAN AND NINO

CODE			pcs
XYL3570200		TTF200	10
XYL35120240		TTN240 - TTS240	10
XYL35100200		TCF200 - TCN200	10
XYL3580105	1. S.	NINO100100	10
XYL3555150		NINO15080	10
XYL35120105		NINO100200	10

SEPARATING PROFILE FOR WHT AND SCREWS

CODE			pcs
XYLW806060		WHT340 WHT440 WHT540	10
XYLW808080		-	10
XYLW8080140		-	1
XYLW803811	٢	-	50

CE ETA-23/0061

FLANKSOUND

EN ISO 10848

6 | XYLOFON | XYLOFON

	K_{ij} values entered in ETA K_{ij} tested for all hardness values and with appropriate fastening system $\Delta_{l,ij} > 7 \text{ dB}$	from page 8
	 Mechanical performance and elastic behaviour tested according to ETA elastic response of the profile applied in buildings elastic response of the profile as vibration damping 	page 10
EPD LCA	Sustainability possibility of knowing the impact of the product thanks to EPD s evaluated from LCA s	page 12
	Sound reduction measurements measured effectiveness in reducing flanking sound transmission through soundproofing power measures $\Delta R_{Df+Ff,situ} = 10 \text{ dB}$	page 44
	FLANKSOUND PROJECT K _{ij} for 15 different types of joint	page 48
	Impact noise level measurements measured effectiveness in reducing flanking sound transmission through impact sound measures $\Delta L_{n,Df+Ff,situ} = 8 \text{ dB}$	page 61
	On site measurements effectiveness verified through the measurement of passive acoustic requirements in constructed buildings	page 71
	Static to acoustic interaction experimental investigations and tests on different configurations up to 34,6 kN shear strength with NINO with XYLOFON PLATE	page 86
	Influence of friction experimental investigations for timber-to-timber shear connections	page 90
	Fire safety in buildings Study of compartmentalisation of timber buildings temperatures below 300°C after 4 hours and without secondary flashover after 3 hours	page 92
XYLOFON + FIRE SEALING	Fire resistance experimental test EI 60	page 95

PRODUCT COMPARISON

dynamic elastic modulus E' _{5Hz} - E' _{50Hz}	damping factor tanõ _{5Hz} - tanõ _{50Hz}	ac	acoustic load / maximum applied load							
		0	5 tic load	10	15	20	25	30	35	
		0,016 0,1								
-	-	maxin	num app	olied load [N/mm²]					
		0,016 📕 1	,25							
		acous	tic load	[N/mm ²]						
		0,038 0,	32							
3,10 N/mm ² - 3,60 N/mm ² 450 psi - 522 psi	0,321 - 0,382	maxin	num app	olied load [N/mm²]					
		0,038	3,6	1						
		acous	tic load	[N/mm ²]						
7 07 N/mm ² 4 76 N/mm ²	0,173 - 0,225	0,22 0,	68							
570 psi - 632 psi		maxin	num app	olied load [N/mm ²]					
		0,22		8,59						
		acous	tic load	[N/mm ²]						
6,44 N/mm ² - 7,87 N/mm ²	0,118 - 0,282	0,49 🖷 1	,>							
934 psi - 1141 psi		maxin	num app	olied load [N/mm ²]					
		0,49			1,1					
		acous	tic load	[N/mm ²]						
16,90 N/mm ² - 21,81 N/mm ²	0,150 - 0,185									
2451 psi - 3163 psi		maxin	num app	olied load [N/mm ²]	19	51			
		acous	tic load	[N/mm ²]						
		2,2	4,	5						
39,89 N/mm ² - 65,72 N/mm ²	0,307 - 0,453	maxin	num apr	blied load [N/mm ²¹					
5786 psi - 9532 psi		2,2						28	8,97	

PRODUCT CHOICE AND DETERMINATION OF K_{ii}

DESIGNING THE CORRECT PROFILE ACCORDING TO THE LOAD

Resilient profiles must be correctly loaded in order to isolate the low to medium frequencies of structurally transmitted vibrations: guidance on how to proceed with the evaluation of the product are given below. It is advisable to add the permanent load value at 50% of the characteristic value of the accidental load.

 $\mathbf{Q}_{\text{linear}} = \mathbf{q}_{\text{gk}} + 0.5 \, \mathbf{q}_{\text{vk}}$

 $Q_{linear} = DL + 0,5 LL$

It is necessary to focus on the operating conditions and not the ultimate limit state conditions. This is because the goal is to insulate the building from noise during normal operating conditions and not during design limit states.

PRODUCT SELECTION

The product can also be selected using the application tables (see for example the following table for XYLOFON 35).

TABLE OF USEN

CODE		load for optimis [kN/m]	acousti ation ²	c	compression for acoustic optimisation(8) [N/mm²] (psi/				compressivo stress at 3 mm (ultimate limit state)
	rr	in	п	18x	min	xsm	min	max	Inclusion) they
XYL35080	3,04	2242	25,6	18882					
XYL35090	3,42	2522	28,8	21242					
XYL35100	3.8	2803	32	23602	0.038	0.32	0.05	0.5	3.61
XYL35120	4,56	3363	38,4	28322	5.5	46.4	2	20	524
XYL35140	5,32	5924	44,8	33043					
XYL35160	6,08	4484	51,2	37763					

Note: The static behaviour of the material in compression is evaluated, considering that the deformations due to the loads are static. This is because a building is not affected by significant movement phenomena, nor dynamic deformation.

Rothoblaas has chosen to define a load range that allows good acoustic performance and avoids excessive deformation and differential movements in the materials, including the building's final architectural finishes. It is possible to use profiles with loads outside the indicated range if the resonance frequency of the system and the deformation of the profile at the ultimate limit state are assessed.

DETERMINATION OF PERFORMANCE

100 Hz.

Once the loads have been identified, it is necessary to determine the design frequency - that is the stimulating frequency for the element from which the structure needs to be isolated. Below is an example, to make the explanation easier and simple to understand.

Suppose there is a load of 0,3 N/mm² acting on the profile. In this case, we used the XYLOFON 35 product, because the load is not particularly high. Reading the graph, it can be seen that the profile has a resonance frequency of around 22 Hz.

natural frequency [Hz]

transmission [dB]

transmission = $f/f_0 = 4,55$

At this point, the degree of transmission for the product under these load conditions can be calculated, referring to the design frequency of

Then the transmission graph is used, placing the value 4,55 obtained on the x-axis and intersecting the degree of the transmission curve. It follows that the transmission of the material is negative i.e. that the material is able to insulate around -11 dB.

TRANSMISSION IS POSITIVE WHEN THE MATERIAL TRANSMITS AND IS NEGATIVE WHEN THE PROFILE BEGINS TO INSULATE. This means this figure shows that the product, loaded in this way, insulates 11 dB at a reference frequency of 100 Hz.

The same thing can be done using the attenuation graph. The percentage of vibration attenuated at the initial design frequency is obtained. The attenuation is also calculated with the load conditions referring to the design frequency of 100 Hz.

attenuation = $f/f_0 = 4,55$

The graph is used by placing the calculated value of 4.55 on the x-axis and intersecting the attenuation curve.

It follows that the material's attenuation is optimal, i.e., the material can isolate more than 92 % of the transmission.

Essentially, the same result is obtained with two different inputs, but when deformation is set, the starting point is the mechanical performance, not the acoustic one.

In the light of this fact, Rothoblaas always recommends starting with the design frequency and the loads to optimise the material based on the real conditions.

EUROPEAN TECHNICAL ASSESSMENT (ETA)

The European Technical Assessment (ETA) provides an **independent procedure at European level** for assessing the essential performance characteristics of non-standard construction products.

OBJECTIVITY AND INDEPENDENCE

Only independent Technical Assessment Bodies (TAB) can issue ETAs. Third-party evaluation enhances the credibility of product performance information, improves **market transparency**, and ensures that the stated values are tested to **precise standards** appropriate for the intended use of the product.

TRANSPARENCY

ETAs provide **reliable product performance information** that can be compared across Europe on the basis of harmonised technical specifications, the European Assessment Documents (EADs). ETAs have made construction products **comparable throughout the European Economic Area** through the provision of detailed product performance information.

PARAMETERS TESTED ACCORDING TO ETA

STATIC AND DYNAMIC MODULUS OF ELASTICITY

Many products on the market have been tested to determine the dynamic elastic modulus and damping factor in order to provide transmissibility graphs according to the natural frequency of the resilient profile.

Since there is no common standard, each manufacturer follows a different procedure, and often the standard used and the test setup are not stated.

Considering the intended use of **XYLOFON**, the dynamic elastic modulus and damping factor must be determined in compression (there would be no point in defining them according to other deformation methods). Dynamic elastic modulus and damping factor are measured under dynamic conditions and are relevant for vibration reduction in service equipment or other vibration sources.

In buildings, **XYLOFON** is subject to static and quasi-static loading, so the dynamic elastic modulus is not as representative of the product's actual behaviour.

Tests show that profile friction could affect the elastic modulus value, and that is why it is necessary to always perform measurements with and without a lubricant to have a value that is independent of boundary conditions (without friction) and a value that is representative of the in situ operating conditions (with friction).

VIBRATION REDUCTION INDEX - K

Due to the lack of a common standard, each manufacturer provides K_{ij} values tested in a different configuration (type of joint, number of fastening systems, etc.). Clarifying the test setup and boundary conditions being used is important because the result is strongly influenced by the many variables that define the joint.

In the European Technical Assessment, the results are expressed clearly to avoid ambiguity in the configuration.

STRESS AND DEFORMATION IN COMPRESSION

XYLOFON has been tested under significant compressive stresses, demonstrating linear behaviour even under high loads.

From a static point of view, it is important to provide the **compressive stress according to the deformation** (e.g., 1 mm, 2 mm and 3 mm compression) so as to limit the maximum deformation and possible structural failure.

Resilient profiles are subjected to constant loading during their working life, so it is important to estimate the **long-term behaviour** for both static reasons (to avoid differential failure in the structure) and acoustic reasons (a flattened resilient strip does not have the same elastic response and consequently the acoustic performance declines).

For the same reason, it is important to assess the **final thickness of the product** after compression for a given time and after a recovery period.

Rothoblaas has invested in the development of solutions that follow a multidisciplinary approach and take into account the real conditions of the construction site. Laboratory measurements, static tests, durability tests, moisture control and fire performance studies allow the designer to benefit from real performance data and not just theoretical values that have limited practical applications.

SUSTAINABILITY

CO₂

Environmental sustainability is an increasingly central issue in the construction sector and it has been taken into account in our company for a long time.

Although timber construction is in many respects more sustainable than other building systems, an assessment of the impacts linked to the entire life cycle of the products is still necessary in order to make an objective comparison between different building systems.

A suitable tool for this is the **EPD** (**Environmental Product Declaration**). This is a type III environmental declaration in accordance with EN ISO 14025 which, based on specific parameters, makes it possible to produce a technical document to use in order to make an objective comparison of the environmental impact of various products.

The EPD is a declaration based on **LCA** (Life Cycle Assessment) for which the study of all aspects related to the production, use and disposal of the product is required.

This is a voluntary initiative, not obligatory by law, which we have decided to implement to know the environmental impact of our products, and to allow the designer to have an accurate idea of the ecological footprint of the building he or she is designing.

We strongly believe in a future with less CO₂

XYLOFON 20

CODES AND DIMENSIONS

CODE	Shore	В	L	s	В	L	S	pcs
		[mm]	[m]	[mm]	[in]	[ft]	[in]	
XYL20050		50	3,66	6,0	2	12	1/4	1
XYL20080		80	3,66	6,0	3 1/8	12	1/4	1
XYL20090		90	3,66	6,0	3 1/2	12	1/4	1
XYL20100	20	100	3,66	6,0	4	12	1/4	1
XYL20120		120	3,66	6,0	4 3/4	12	1/4	1
XYL20140		140	3,66	6,0	5 1/2	12	1/4	1
XYL20160		160	3,66	6,0	6 1/4	12	1/4	1

TABLE OF USE^[1]

CODE		load for optimis [kN/m]	acousti ation ⁽²⁾ [lbf/ft]	с	compression for acoustic optimisation ⁽²⁾ [N/mm²] [psi]reduction [mm] [mil]compressive strest (ultimate lim [N/mm²]				compressive stress at 3 mm (ultimate limit state)
	m	nin	m	nax	min	max	min	max	
XYL20050	0,7	590	8	5163					
XYL20080	1,12	944	12,8	8261					
XYL20090	1,26	1062	14,4	9293	0.046	0.4.4	0.00	6 0,6	1,25
XYL20100	1,4	1180	16	10326	0,016	0,14	0,06		
XYL20120	1,68	1416	16 19,2 12391 2.52 20.5 2	24	101				
XYL20140	1,96	1652	22,4	14456					
XYL20160	2,24	1888	25,6	16521					

⁽¹⁾The load ranges reported are optimised with respect to the static behaviour of the material assessed under compression, considering the effect of friction and the system resonance frequency, which falls between 20 and 30 Hz, with a maximum deformation of 12%. See the manual or use MyProject to view transmissibility and attenuation graphs.

⁽²⁾Resilient profiles must be properly loaded in order to isolate medium/low frequency vibrations transmitted structurally. It is advisable to assess the load according to the operating conditions because the building must be acoustically insulated under everyday load conditions (add the value of the permanent load to 50% of the characteristic value of the incidental load $Q_{linear} = q_{gk} + 0.5 q_{vk}$).

LIGHTNESS AND HEIGHT

XYLOFON 20 is the range innovation for light structures and low loads. The acoustic insulation performance is the same as for Mass Timber products, but the 20 shore polyurethane compound allows for use on frame structures, roofs and floors with small dimensions.

In the construction of multi-storey buildings, the use of XYLOFON 20 ensures soundproofing of the highest floors.

PERFORMANCE

Acoustic improvement tested:

L

Maximum applied load (3 mm deformation):

1,25 N/mm²

Acoustic service load:

from 0,014 to 0,16 N/mm²

XYLOFON 35

TABLE OF USE^[1]

CODE	l	load for acoustic optimisation ⁽²⁾ compression for acoustic optimisation ⁽²⁾ reduction [mm] [mil][kN/m] [lbf/ft][N/mm²] [psi][mm] [mil]		ction] [mil]	compressive stress at 3 mm (ultimate limit state)				
	m	nin	m	nax	min	max	min	max	
XYL35080	3,04	2242	25,6	18882					
XYL35090	3,42	2522	28,8	21242					
XYL35100	3,8	2803	32	23602	0,038	0,32	0,05	0,5	3,61
XYL35120	4,56	3363	38,4	28322	5.5	46.4	2	20	524
XYL35140	5,32	3924	44,8	33043					
XYL35160	6,08	4484	51,2	37763					

⁽¹⁾The load ranges reported here are optimised with respect to the acoustic and static behaviour of the material in compression. However, it is possible to use profiles with loads outside the indicated range if the resonance frequency of the system and the deformation of the profile at the ultimate limit state are assessed. See the manual for transmissibility and attenuation graphs.

⁽²⁾Resilient profiles must be properly loaded in order to isolate medium/low frequency vibrations transmitted structurally. It is advisable to assess the load according to the operating conditions because the building must be acoustically insulated under everyday load conditions (add the value of the permanent load to 50% of the characteristic value of the incidental load $Q_{linear} = q_{gk} + 0.5 q_{vk}$).

TECHNICAL DATA

Properties	standard	value	USC conversion
Acoustic improvement $\Delta_{lij}^{(3)}$	ISO 10848	7,4 dB	-
Elastic modulus in compression E_c (without friction $E_{c,lubricant}$)	ISO 844	3,22 MPa (1,74 MPa)	467 psi (252 psi)
Dynamic elastic modulus evaluated at 1 Hz ${\rm E'}_{1{\rm Hz}}$ - ${\rm E''}_{1{\rm Hz}}$	ISO 4664-1	2,79 - 0,77 MPa	405 - 112 psi
Dynamic elastic modulus evaluated at 5 Hz E'_{5Hz} - E''_{5Hz}	ISO 4664-1	3,10 - 1,00 MPa	450 psi - 145 psi
Dynamic elastic modulus evaluated at 10 Hz $\rm E'_{10Hz}$ - $\rm E''_{10Hz}$	ISO 4664-1	3,28 - 1,09 MPa	476 - 158 psi
Dynamic elastic modulus evaluated at 50 Hz E' _{50Hz} - E" _{50Hz}	ISO 4664-1	3,60 - 1,38 MPa	522 - 200 psi
Damping factor evaluated at 1 Hz $tan\delta_{1Hz}$	ISO 4664-1	0,276	-
Damping factor evaluated at 5 Hz $tan\delta_{5Hz}$	ISO 4664-1	0,321	-
Damping factor evaluated at 10 Hz $tan\delta_{10\text{Hz}}$	ISO 4664-1	0,332	-
Damping factor evaluated at 50 Hz $tan\delta_{50Hz}$	ISO 4664-1	0,382	-
Creep $\Delta\epsilon/\epsilon_1$	ISO 8013/ ISO 16534	0,54	-
Compression set c.s.	ISO 1856	0,72%	-
Compression at 1 mm deformation σ_{1mm}	ISO 844	0,5 N/mm ²	73 psi
Compressive stress at 2 mm strain σ_{2mm}	ISO 844	1,54 N/mm ²	223 psi
Compressive stress at 3 mm strain σ_{3mm}	ISO 844	3,61 N/mm ²	524 psi
Dynamic stiffness s' ⁽⁴⁾	ISO 9052	1262 MN/m ³	
Max processing temperature (TGA)	-	200 °C	392 °F
Reaction to fire	EN 13501-1	class E	-
Water absorption after 48h	ISO 62	< 1 %	-

⁽³⁾ Δ_L, jj = K_{ij}, with - K_{ij}, without.
 ⁽⁴⁾ ISO standards require for measurement with loads between 0.4 and 4 kPa and not with the product operating load.

PERFORMANCE

Acoustic improvement tested:

Maximum applied load (3 mm deformation):

3,61 N/mm²

Acoustic service load:

from 0,038 to 0,32 N/mm²

STRESS | DEFORMATION

COMPRESSION

🗕 1,0 Hz/MPa

🗕 5,0 Hz/MPa

🗕 10,0 Hz/MPa

CREEP

COMPRESSION

Relative deformation [% reduction in sample thickness]

---- 20,0 Hz/MPa

🗕 33,3 Hz/MPa

NATURAL FREQUENCY AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

Normalised with respect to the resonance frequency with f = 20 Hz.

DEFORMATION AND LOAD

TRANSMISSIBILITY

NATURAL FREQUENCY AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

TRANSMISSIBILITY

STRUCTURE

upper wall: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3 m - 7.8 *ft* x 10 *ft*) floor: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3,5 m - 7.8 *ft* x 11 *ft*) lower wall: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3 m - 7.8 *ft* x 10 *ft*)

FASTENING SYSTEM

6 **HBS** partially threaded screws Ø8 x 240 mm (HBS8240), spacing 440 mm (*17 1/4 in*) 2 angle brackets **NINO** (NINO15080) with resilient profile **XYLOFON PLATE** (XYL3555150) , 146 x 55 x 77 x 2,5 mm, spacing

1760 mm (*69 5/16 in*)

fastening pattern on CLT: 31 screws Ø5 x 50 mm

RESILIENT PROFILE

XYLOFON 35 + XYLOFON PLATE

position: between the upper wall and the floor + between the floor and the lower wall. **dimensions**: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 2,40 m (7.8 ft) **contact area**: continuous strip (same width as the wall) **applied load** [N/m²]: structure self weight

100				100] 4	440		440	-	440		440		440	10	0
		1)													
2																
					320										320	
f[Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₁₄ [dB]	12,5	19,6	10,5	13,7	14,8	16,7	19,0	17,6	16,7	18,5	21,3	22,8	23,2	18,8	19,8	20,5
	<u></u>	17,9) dB		ł	< _{14,0}	= 14	4,4 c	B			Δ ι,1	4 = 3	5,5 d	B	
f[Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₁₂ [dB]	18,2	21,3	12,3	15,3	17,3	17,6	20,7	20,1	23,6	22,3	23,2	24,0	24,3	22,0	24,1	20,3
	Κ₁₂ =	20,3	3 dB		İ	< _{12,0}	= 14	4,6 d	IB			Δ _{l,1}	2 = 5	5,7 d	B	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₂₄ [dB]	11,8	25,9	16,1	23,5	21,1	25,4	23,9	23,6	26,2	27,5	32,6	34,1	33,2	35,0	34,7	32,0
	$\overline{K_{24}} =$	26,8	8 dB		ŀ	< _{24.0}	= 20	0,4 c	B			$\Delta_{1,2}$	4 = 6	5,4 d	B	

STRUCTURE

upper wall: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3 m - 7.8 *ft* x 10 *ft*) floor: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3,5 m - 7.8 *ft* x 11 *ft*) lower wall: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3 m - 7.8 *ft* x 10 *ft*)

FASTENING SYSTEM

6 **HBS** partially threaded screws Ø8 x 240 mm (HBS8240), spacing 440 mm (17 1/4 in) 2 angle brackets **NINO** (NINO15080) with resilient profile **XYLOFON PLATE** (XYL3555150) , 146 x 55 x 77 x 2,5 mm, spacing 1760 mm (69 5/16 in)

fastening pattern on CLT: 31 screws Ø5 x 50 mm

RESILIENT PROFILE

XYLOFON 35 + XYLOFON PLATE

position: between the upper wall and the floor + between the floor and the lower wall. **dimensions**: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 2,40 m (7.8 ft) **contact area**: continuous strip (same width as the wall) **applied load** [N/m²]: 210000

		1)			440		440		440		440		440		
2	100	105	460		320										320	
	21.0	20.1	160	10.0	17.5	315	400	177	630	17.6	1000	1250	1600	10.2	10.5	3150
к ₁₄ [UD]	$\overline{K_{14}} =$	19,4	4 dB	19,9	17,5	<hr/>	= 1	3,3 c	B	17,0	17,9	Δ _{l,1}	4 = (5,1 d	B	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K ₁₂ [dB]	21,7	24,6	17,2	20,0	21,1	20,5	20,0	20,9	21,8	22,6	20,7	22,4	27,0	21,8	22,3	27,4
	Κ₁₂ =	21,0	6 dB		İ	< _{12,0}	= 14	4,5 c	B			Δ _{l,1}	2 =	7,1 d	B	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₂₄ [dB]	18,9	29,2	23,3	22,6	24,2	22,5	22,0	20,2	22,6	22,0	24,7	25,8	32,0	29,9	28,5	29,6

 $\overline{K_{24.0}} = 17,3 \text{ dB}$

 $\Delta_{l,24} = 7,4 \, dB$

STRUCTURE

upper wall: CLT 5 layers (s: 100 mm - 4 in) (2,4 m x 3 m - 7.8 ft x 10 ft) floor: CLT 5 layers (s: 100 mm - 4 in) (2,4 m x 3,5 m - 7.8 ft x 11 ft) lower wall: CLT 5 layers (s: 100 mm - 4 in) (2,4 m x 3 m - 7.8 ft x 10 ft)

FASTENING SYSTEM

6 HBS partially threaded screws Ø8 x 240 mm (HBS8240), spacing 440 mm (17 1/4 in) 2 angle brackets NINO (NINO15080) with resilient profile XYLOFON PLATE (XYL3555150) , 146 x 55 x 77 x 2,5 mm, spacing 1760 mm (69 5/16 in) fastening pattern on CLT: 31 screws Ø5 x 50 mm

RESILIENT PROFILE

XYLOFON 35 + XYLOFON PLATE

position: between the upper wall and the floor **dimensions**: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 2,40 m (7.8 ft) contact area: continuous strip (same width as the wall) applied load [N/m²]: 210000

)			440		440		440		440		440		
2					320										320	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₁₄ [dB]	20,9	19,3	20,5	20,4	16,4	21,4	26,2	19,1	21,6	17,7	18,9	21,6	20,1	17,7	18,3	20,1
	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	20,:	1 dB		İ	К _{14,0}	= 13	3,3 d	B			Δ _{l,1} ,	4 = 6	5,8 d	B	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K ₁₂ [dB]	20,1	18,3	12,5	10,2	13,3	10,6	13,9	10,7	14,6	11,1	9,6	13,2	17,3	14,8	17,9	21,1
	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	13,:	1 dB		İ	≺ _{12,0}	= 14	4,5 c	IB			Δ l,12	2 = -	1,4 c	IB	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₂₄ [dB]	20,4	25,7	23,2	20,7	22,1	24,3	24,6	20,5	22,5	20,9	22,2	23,9	27,5	27,8	28,3	28,1
	K ₂₄ =	23,	5 dB		Ī	K _{24,0}	= 1	7,3 d	B			Δ ι, 2	4 = 6	5,2 d	B	

22 | XYLOFON | XYLOFON

X-JOINT | INTERNAL WALLS EN ISO 10848-1/4

STRUCTURE

upper wall: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3 m - 7.8 *ft* x 10 *ft*) floor: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 7,1 m - 7.8 *ft* x 23.3 *ft*) lower wall: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3 m - 7.8 *ft* x 10 *ft*)

FASTENING SYSTEM

6 **HBS** partially threaded screws Ø8 x 240 mm (HBS8240), spacing 440 mm (*17 1/4 in*) 2 angle brackets **NINO** (NINO15080) with resilient profile **XYLOFON PLATE** (XYL3555150) , 146 x 55 x 77 x 2,5 mm, spacing 1760 mm (*69 5/16 in*)

fastening pattern on CLT: 31 screws Ø5 x 50 mm

RESILIENT PROFILE

XYLOFON 35 + XYLOFON PLATE

position: between the upper wall and the floor + between the floor and the lower wall **dimensions**: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 2,40 m (7.8 ft) **contact area**: continuous strip (same width as the wall) **applied load** [N/m²]: structure self weight

	100				100	440		44		44	40	2	440		440	100
3															·····	
	X)														
					32	20									3	20
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₁₄ [dB]	19,5	21,5	19,6	17,0	17,5	14,7	19,1	21,0	20,8	19,3	22,2	23,2	22,6	20,4	19,8	19,9
	Κ₁₄ =	19,9	dB		ŀ	< _{14,0}	= 17	7,0 d	B			Δ ι,1	₄ = 2	2,9 d	B	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K ₁₂ [dB]	16,7	15,6	12,0	17,4	17,7	16,1	21,0	20,2	23,1	19,1	23,4	22,4	24,2	23,9	24,7	24,0
	Κ₁₂ =	19 ,7	7 dB		ŀ	< _{12,0}	= 15	5,9 d	B			Δ _{l,1}	2 = 3	5,8 d	B	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₂₄ [dB]	17,1	26,2	25,2	26,9	23,2	25,9	28,2	24,6	26,6	30,2	32,2	33,5	31,4	37,0	36,3	32,8
					_											

K₂₄ = **28,6 dB**

 $\overline{K_{24,0}} = 23,2 \, dB$

 $\Delta_{L24} = 5,4 \, dB$

XYLOFON 50

TABLE OF USE^[1]

CODE		load for optimis [kN/m]	acoustic ation ⁽²⁾ [lbf/ft]	С	compression optimis [N/mm	n for acoustic sation ⁽²⁾ n ²] [psi]	redu [mm	ction] [mil]	compressive stress at 3 mm (ultimate limit state)
	n	nin	m	ах	min	max	min	max	
XYL50080	17,6	12981	54,4	40123					
XYL50090	19,8	14604	61,2	45139					
XYL50100	22	16226	68	50154	0,22	0,68	0,07	0,6	8,59
XYL50120	26,4	19472	81.6	60185	31.9	98.6	3	24	1246
XYL50140	30,8	22717	95,2	70216					
XYL50160	35,2	25962	108,8	80247					

⁽¹⁾The load ranges reported here are optimised with respect to the acoustic and static behaviour of the material in compression. However, it is possible to use profiles with loads outside the indicated range if the resonance frequency of the system and the deformation of the profile at the ultimate limit state are assessed. See the manual for transmissibility and attenuation graphs.

⁽²⁾Resilient profiles must be properly loaded in order to isolate medium/low frequency vibrations transmitted structurally. It is advisable to assess the load according to the operating conditions because the building must be acoustically insulated under everyday load conditions (add the value of the permanent load to 50% of the characteristic value of the incidental load $Q_{linear} = q_{gk} + 0.5 q_{vk}$).

TECHNICAL DATA

Properties	standard	value	USC conversion
Acoustic improvement $\Delta_{iij}^{(3)}$	ISO 10848	10,6 dB	-
Elastic modulus in compression E_c (without friction $E_{c,lubricant}$)	ISO 844	7,11 MPa (2,89 MPa)	1031 psi (419 psi)
Dynamic elastic modulus evaluated at 1 Hz ${\rm E'}_{1{\rm Hz}}$ - ${\rm E''}_{1{\rm Hz}}$	ISO 4664-1	4,64 - 0,55 MPa	673 - 80 psi
Dynamic elastic modulus evaluated at 5 Hz E'_{5Hz} - E''_{5Hz}	ISO 4664-1	3,93 - 0,68 MPa	570 psi - 99 psi
Dynamic elastic modulus evaluated at 10 Hz E'_{10Hz} - E''_{10Hz}	ISO 4664-1	4,09 - 0,73 MPa	593 - 106 psi
Dynamic elastic modulus evaluated at 50 Hz E' _{50Hz} - E" _{50Hz}	ISO 4664-1	4,36 - 0,98 MPa	632 - 142 psi
Damping factor evaluated at 1 Hz $tan\delta_{1Hz}$	ISO 4664-1	0,153	-
Damping factor evaluated at 5 Hz $tan\delta_{5Hz}$	ISO 4664-1	0,173	-
Damping factor evaluated at 10 Hz $tan\delta_{10Hz}$	ISO 4664-1	0,178	-
Damping factor evaluated at 50 Hz $tan\delta_{50Hz}$	ISO 4664-1	0,225	-
Creep $\Delta\epsilon/\epsilon_1$	ISO 8013/ ISO 16534	0,53	-
Compression set c.s.	ISO 1856	1,25%	-
Compression at 1 mm deformation σ_{1mm}	ISO 844	1,11 N/mm ²	161 psi
Compression at 2 mm deformation σ_{2mm}	ISO 844	3,50 N/mm ²	508 psi
Compression at 3 mm deformation σ_{3mm}	ISO 844	8,59 N/mm ²	1246 psi
Dynamic stiffness s' ⁽⁴⁾	ISO 9052	1455 MN/m ³	-
Max processing temperature (TGA)	-	200 °C	392 °F
Reaction to fire	EN 13501-1	class E	-
Water absorption after 48h	ISO 62	< 1 %	-

⁽³⁾ \(\Lambda_L, ij = K_{ij,with} - K_{ij,without}\).
 ⁽⁴⁾ SO standards require for measurement with loads between 0.4 and 4 kPa and not with the product operating load.

PERFORMANCE

Acoustic improvement tested:

Maximum applied load (3 mm deformation):

8,59 N/mm²

Acoustic service load:

from 0,22 to 0,68 N/mm²

STRESS | DEFORMATION

COMPRESSION

DYNAMIC ELASTIC MODULUS E'

DMTA

DYNAMIC ELASTIC MODULUS G'

🗕 1,0 Hz/MPa

🗕 5,0 Hz/MPa

🗕 10,0 Hz/MPa

CREEP

COMPRESSION

Relative deformation [% reduction in sample thickness]

TAN δ UNDER STRESS

---- 20,0 Hz/MPa

🗕 33,3 Hz/MPa

50,0 Hz/MPa

NATURAL FREQUENCY AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

Normalised with respect to the resonance frequency with f = 20 Hz.

DEFORMATION AND LOAD

TRANSMISSIBILITY

NATURAL FREQUENCY AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

DEFORMATION AND LOAD

TRANSMISSIBILITY

STRUCTURE

upper wall: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3 m - 7.8 *ft x 10 ft*) floor: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3,5 m - 7.8 *ft x 11 ft*) lower wall: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3 m - 7.8 *ft x 10 ft*)

FASTENING SYSTEM

6 **HBS** partially threaded screws Ø8 x 240 mm (HBS8240), spacing 440 mm (*17 1/4 in*) 2 angle brackets **NINO** (NINO15080) with resilient profile **XYLOFON PLATE** (XYL3555150), 146 x 55 x 77 x 2,5 mm, spacing 1760 mm (*69 5/16 in*)

fastening pattern on CLT: 31 screws Ø5 x 50 mm

RESILIENT PROFILE

XYLOFON 50 + XYLOFON PLATE

position: between the upper wall and the floor + between the floor and the lower wall. **dimensions**: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 2,40 m (7.8 ft) **contact area**: continuous strip (same width as the wall) **applied load** [N/m²]: 338000

100				101		440		440		440		440		440	10	
		1)													
2					320										320	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₁₄ [dB]	17,6	17,7	20,5	21,3	18,4	21,9	24,3	16,9	20,5	21,0	18,6	19,7	21,9	16,1	16,3	20,7
	K ₁₄ =	19,9	9 dB		İ	K _{14,0}	= 13	3,3 c	B			Δ ι,1	4 = 6	5,6 d	B	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K ₁₂ [dB]	22,1	19,2	15,9	21,0	20,5	21,5	24,0	21,2	19,8	23,0	23,7	23,6	26,8	23,2	24,3	28,3
	Κ₁₂ =	21,8	8 dB		ŀ	≺ _{12,0}	= 14	4,5 c	IB			Δ _{l,1}	2 = 7	7,3 d	B	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K ₂₄ [dB]	18,7	26,7	26,6	31,1	24,4	27,8	26,6	25,3	22,5	27,8	28,6	33,2	28,6	33,3	34,0	31,6
	Κ₂₄ =	27,9	9 dB		Ī	K _{24,0}	= 1	7,3 d	B			Δ ι,24	, = 1	0,6 (dB	

STRUCTURE

upper wall: CLT 5 layers (s: 100 mm - 4 in) (2,4 m x 3 m - 7.8 ft x 10 ft) floor: CLT 5 layers (s: 100 mm - 4 in) (2,4 m x 3,5 m - 7.8 ft x 11 ft) lower wall: CLT 5 layers (s: 100 mm - 4 in) (2,4 m x 3 m - 7.8 ft x 10 ft)

FASTENING SYSTEM

6 HBS partially threaded screws Ø8 x 240 mm (HBS8240), spacing 440 mm (17 1/4 in) 2 angle brackets NINO (NINO15080) with resilient profile XYLOFON PLATE (XYL3555150), 146 x 55 x 77 x 2,5 mm, spacing 1760 mm (69 5/16 in)

fastening pattern on CLT: 31 screws Ø5 x 50 mm

RESILIENT PROFILE

XYLOFON 50 + XYLOFON PLATE

 $\overline{K_{24}} = 29,3 \text{ dB}$

 $\overline{K_{24,0}} = 20,4 \text{ dB}$

position: between the upper wall and the floor + between the floor and the lower wall. **dimensions**: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 2,40 m (7.8 ft) contact area: continuous strip (same width as the wall) applied load [N/m²]: structure self weight

		(1)		320			440		440		440			10	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K ₁₄ [dB]	12,3	18,4	17,0	19,7	15,3	19,3	23,6	20,5	22,2	19,9	23,6	24,5	24,6	22,4	21,8	20,5
	$\overline{K_{14}} =$	20,8	8 dB		ŀ	< _{14,0}	= 14	1,4 c	B			Δ _{l,1} ,	4 = 6	5,4 d	B	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K ₁₂ [dB]	15,5	19,2	15,8	18,1	19,0	19,4	20,9	18,3	18,8	20,3	20,4	23,7	25,0	24,1	21,3	23,5
	Κ₁₂ =	20,	2 dB		İ	< _{12,0}	= 14	4,6 c	IB			Δ _{l,1}	2 = 5	5,6 d	B	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K ₂₄ [dB]	12,3	25,0	20,2	26,9	23,5	27,7	27,0	27,0	28,8	30,5	33,5	36,0	35,9	38,7	36,1	31,6

XYLOFON		XYLOFON		29
X Y LUFUN		XYLUFUN		29

 $\Delta_{l,24} = 8,9 \, dB$

STRUCTURE

upper wall: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3 m - 7.8 *ft* x 10 *ft*) floor: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3,5 m - 7.8 *ft* x 11 *ft*) lower wall: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3 m - 7.8 *ft* x 10 *ft*)

FASTENING SYSTEM

6 **HBS** partially threaded screws Ø8 x 240 mm (HBS8240), spacing 440 mm (*17 1/4 in*) 2 angle brackets **NINO** (NINO15080) with resilient profile **XYLOFON PLATE** (XYL3555150), 146 x 55 x 77 x 2,5 mm, spacing 1760 mm (*69 5/16 in*) fastening pattern on CLT: 31 screws Ø5 x 50 mm

rastening pattern on CET. ST screws Ø3 A C

RESILIENT PROFILE

XYLOFON 50 + XYLOFON PLATE

position: between the upper wall and the floor dimensions: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 2,40 m (7.8 ft) contact area: continuous strip (same width as the wall) applied load [N/m²]: 338000

				100		440		440		440		440		440	10	
		(1				······								······		
2			<u> </u> 100													
					320									Ĺ	320	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₁₄ [dB]	19,4	18,3	20,6	27,4	19,4	23,9	25,0	17,1	19,3	20,4	19,6	20,6	22,8	17,3	18,4	21,1
	$\overline{K_{14}} =$	20,9	9 dB		ł	≺ _{14,0}	= 13	3,3 d	B			Δ _{l,1}	4 = 7	7,6 d	B	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₁₂ [dB]	15,8	13,8	8,9	9,4	13,8	10,5	13,8	10,2	11,7	11,0	10,1	13,0	15,9	14,9	16,8	19,9
	Κ₁₂ =	12,	1 dB		ŀ	< _{12,0}	= 14	4,5 d	IB			Δ _{l,12}	<u>e</u> = -2	2,4 c	B	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₂₄ [dB]	18,2	23,7	23,2	28,0	26,4	24,5	24,4	19,6	20,2	23,0	21,0	25,7	26,4	29,3	30,3	28,2

K₂₄ = **24,3 dB**

```
\overline{K_{24,0}} = 17,3 \text{ dB}
```

 $\Delta_{l,24} = 7 dB$

STRUCTURE

upper wall: CLT 5 layers (s: 100 mm - 4 in) (2,4 m x 3 m - 7.8 ft x 10 ft) floor: CLT 5 layers (s: 100 mm - 4 in) (2,4 m x 3,5 m - 7.8 ft x 11 ft) lower wall: CLT 5 layers (s: 100 mm - 4 in) (2,4 m x 3 m - 7.8 ft x 10 ft)

FASTENING SYSTEM

6 HBS partially threaded screws Ø8 x 240 mm (HBS8240), spacing 440 mm (17 1/4 in) 2 angle brackets NINO (NINO15080) with resilient profile XYLOFON PLATE (XYL3555150) , 146 x 55 x 77 x 2,5 mm, spacing 1760 mm (69 5/16 in)

fastening pattern on CLT: 31 screws Ø5 x 50 mm

RESILIENT PROFILE

XYLOFON 50 + XYLOFON PLATE

position: between the upper wall and the floor **dimensions**: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 2,40 m (7.8 ft) contact area: continuous strip (same width as the wall) applied load [N/m²]: structure self weight

				100		440		440		440		440		440	10	10
		(1]			9								· · · · · ·		11/7
2																
					320										320	
f[Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₁₄ [dB]	11,0	14,4	16,0	17,2	17,3	19,8	23,1	20,1	23,5	21,7	26,9	26,6	24,5	24,6	24,1	22,0
	$\overline{K_{14}} =$	21,	2 dB		ŀ	≺ _{14,0}	= 14	4,4 c	IB			Δ ι,1	4 = 6	5,8 d	B	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₁₂ [dB]	15,8	10,9	9,5	9,2	14,5	10,7	13,2	10,3	14,3	12,1	14,5	14,4	15,7	18,0	19,4	19,7
	Κ₁₂ =	12,9	9 dB		İ	K _{12,0}	= 14	4,6 d	B			Δ ι,12	<u>2</u> = -	1,8 c	B	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K ₂₄ [dB]	15,2	24,5	21,3	23,8	19,6	23,0	22,6	21,9	26,7	26,8	31,6	26,3	29,8	34,3	34,9	31,1

 $\overline{K_{24,0}} = 20,4 \text{ dB}$

 $\Delta_{l,24} = 5,1 \, dB$

XYLOFON 70

TABLE OF USE^[1]

CODE		load for a optimis [kN/m]	acoust ation ⁽² [lbf/ft]	ic)	compression optimis [N/mm	redu [mm	n] [mil]	compressive stress at 3 mm (ultimate limit state)		
	n	nin	n	nax	min	max	min	max		
XYL70080	39,2	28912	120	88507						
XYL70090	44,1	32526	135	99571						
XYL70100	49	36141	150	110634	0,49	1,5	0,2	0,65	11,1	
XYL70120	58,8	43369	180	132761	71.1	218	8	26	1610	
XYL70140	68.6	50597	210	154888						
XYL70160	78,4	57825	240	177015						

(1) The load ranges reported here are optimised with respect to the acoustic and static behaviour of the material in compression. However, it is possible to use profiles with loads outside the indicated range if the resonance frequency of the system and the deformation of the profile at the ultimate limit state are assessed. See the manual for transmissibility and attenuation graphs.

⁽²⁾Resilient profiles must be properly loaded in order to isolate medium/low frequency vibrations transmitted structurally. It is advisable to assess the load according to the operating conditions because the building must be acoustically insulated under everyday load conditions (add the value of the permanent load to 50% of the characteristic value of the incidental load $Q_{linear} = q_{gk} + 0.5 q_{vk}$).

TECHNICAL DATA

Properties	standard	value	USC conversion
Acoustic improvement $\Delta_{lij}^{(3)}$	ISO 10848	7,8 dB	-
Elastic modulus in compression E_c (without friction $E_{c,lubricant}$)	ISO 844	14,18 MPa (7,26 MPa)	2057 psi (1053 psi)
Dynamic elastic modulus evaluated at 1 Hz ${\rm E'}_{1{\rm Hz}}$ - ${\rm E''}_{1{\rm Hz}}$	ISO 4664-1	6,00 - 0,47 MPa	870 - 68 psi
Dynamic elastic modulus evaluated at 5 Hz E'_{5Hz} - E''_{5Hz}	ISO 4664-1	6,44 - 0,77 MPa	934 psi - 112 psi
Dynamic elastic modulus evaluated at 10 Hz E'_{10Hz} - E''_{10Hz}	ISO 4664-1	6,87 - 1,03 MPa	996 - 149 psi
Dynamic elastic modulus evaluated at 50 Hz $\rm E'_{50Hz}$ - $\rm E''_{50Hz}$	ISO 4664-1	7,87 - 2,22 MPa	1141 - 322 psi
Damping factor evaluated at 1 Hz $tan\delta_{1Hz}$	ISO 4664-1	0,077	-
Damping factor evaluated at 5 Hz $tan\delta_{5Hz}$	ISO 4664-1	0,118	-
Damping factor evaluated at 10 Hz $tan\delta_{10Hz}$	ISO 4664-1	0,148	-
Damping factor evaluated at 50 Hz $tan\delta_{50Hz}$	ISO 4664-1	0,282	-
Creep $\Delta \epsilon / \epsilon_1$	ISO 8013/ ISO 16534	2,9	-
Compression set c.s.	ISO 1856	0,71%	-
Compression at 1 mm deformation σ_{1mm}	ISO 844	2,44 N/mm ²	354 psi
Compression at 2 mm deformation σ_{2mm}	ISO 844	5,43 N/mm ²	788 psi
Compression at 3 mm deformation σ_{3mm}	ISO 844	11,10 N/mm ²	1610 psi
Dynamic stiffness s' ⁽⁴⁾	ISO 9052	1822 MN/m ³	
Max processing temperature (TGA)	-	200 °C	392 °F
Reaction to fire	EN 13501-1	class E	-
Water absorption after 48h	ISO 62	< 1 %	-

⁽³⁾ Δ_L, jj = K_{ij}, with - K_{ij}, without.
 ⁽⁴⁾ ISO standards require for measurement with loads between 0.4 and 4 kPa and not with the product operating load.

PERFORMANCE

Acoustic improvement tested:

Maximum applied load (3 mm deformation):

11,1 N/mm²

Acoustic service load:

STRESS | DEFORMATION

COMPRESSION

DYNAMIC ELASTIC MODULUS E'

DMTA

CREEP

COMPRESSION

Relative deformation [% reduction in sample thickness]

TAN δ UNDER STRESS DMTA

Loss factor

---- 50,0 Hz/MPa 🗕 33,3 Hz/MPa

NATURAL FREQUENCY AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

Normalised with respect to the resonance frequency with f = 20 Hz.

DEFORMATION AND LOAD

TRANSMISSIBILITY

NATURAL FREQUENCY AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

DEFORMATION AND LOAD

TRANSMISSIBILITY

STRUCTURE

upper wall: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3 m - 7.8 *ft* x 10 *ft*) floor: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3,5 m - 7.8 *ft* x 11 *ft*) lower wall: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3 m - 7.8 *ft* x 10 *ft*)

FASTENING SYSTEM

6 **HBS** partially threaded screws Ø8 x 240 mm (HBS8240), spacing 440 mm (17 1/4 in) 2 angle brackets **NINO** (NINO15080) with resilient profile **XYLOFON PLATE** (XYL3555150) , 146 x 55 x 77 x 2,5 mm, spacing 1760 mm (69 5/16 in)

fastening pattern on CLT: 31 screws Ø5 x 50 mm

RESILIENT PROFILE

XYLOFON 70 + XYLOFON PLATE

position: between the upper wall and the floor + between the floor and the lower wall **dimensions**: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 2,40 m (7.8 ft) **contact area**: continuous strip (same width as the wall) **applied load** [N/m²]: 625000

						440		440		440		440		440		
	1															
2					320										320	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₁₄ [dB]	15,1	21,7	16,7	14,0	18,0	15,9	19,6	15,5	16,8	16,5	14,7	16,8	18,0	15,6	14,4	17,8
	$\overline{K_{14}} = 16,9 \text{ dB}$ $\overline{K_{14,0}} = 13,3 \text{ dB}$ $\Delta_{l,14} = 3,6 \text{ dB}$															
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₁₂ [dB]	21,1	23,8	15,4	17,4	16,0	18,2	20,6	18,4	20,4	19,8	18,3	17,8	22,8	18,8	18,4	22,3
	$\overline{K_{12}} = 19,0 \text{ dB}$ $\overline{K_{12,0}} = 14,5 \text{ dB}$ $\Delta_{l,12} = 4,5 \text{ dB}$															
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₂₄ [dB]	16,1	28,4	25,6	24,8	23,3	23,9	22,3	22,5	23,1	23,4	25,2	23,7	29,1	31,5	31,2	31,1
	$\overline{K_{24}} = 25,1 dB$ $\overline{K_{24,0}} = 17,3 dB$									Δ _{L24} = 7,8 dB						

36 | XYLOFON | XYLOFON
T-JOINT | PERIMETER WALLS EN ISO 10848-1/4

STRUCTURE

upper wall: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3 m - 7.8 *ft* x 10 *ft*) floor: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3,5 m - 7.8 *ft* x 11 *ft*) lower wall: CLT 5 layers (s: 100 mm - 4 *in*) (2,4 m x 3 m - 7.8 *ft* x 10 *ft*)

FASTENING SYSTEM

6 **HBS** partially threaded screws Ø8 x 240 mm (HBS8240), spacing 440 mm (*17 1/4 in*) 2 angle brackets **NINO** (NINO15080) with resilient profile **XYLOFON PLATE** (XYL3555150) , 146 x 55 x 77 x 2,5 mm, spacing 1760 mm *69 5/16 in*) fastening pattern on CLT: 71 screws Ø5 x 50 mm

fastening pattern on CLT: 31 screws Ø5 x 50 mm

RESILIENT PROFILE

XYLOFON 70 + XYLOFON PLATE

position: between the upper wall and the floor dimensions: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 2,40 m (7.8 ft) contact area: continuous strip (same width as the wall) applied load [N/m²]: 625000

100				100]	140		440		440		440		440	10	0
)													
2					320										320	
f[Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₁₄ [dB]	18,4	16,2	21,3	21,8	18,9	17,4	20,2	16,7	16,7	17,1	14,7	18,3	18,6	16,3	13,8	19,2
	$\overline{K_{14}} =$	18,0) dB		ł	< _{14,0}	= 13	3,7 d	B			Δ _{l,1}	4 = 4	l,7 d	B	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₁₂ [dB]	18,9	19,1	15,6	10,6	13,1	12,8	14,6	10,5	13,8	12,0	11,0	11,9	17,2	14,3	16,4	21,3
	Κ₁₂ =	16,0	5 dB		ŀ	< _{12,0}	= 14	4,5 d	B			Δ ι,12	<u>2</u> = -	0,9 c	B	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150

f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₂₄ [dB]	15,0	28,7	25,6	22,0	23,5	23,6	22,5	19,3	18,4	21,2	22,2	22,5	24,8	27,4	29,6	29,9

 $\overline{K_{24,0}} = 17,3 \text{ dB}$

 $\Delta_{L24} = 5,9 \, dB$

XYLOFON 80

TABLE OF USE^[1]

CODE		load for a optimisa [kN/m]	acoust ation ⁽² [lbf/ft]	ic)	compression optimis [N/mm	n for acoustic sation ⁽²⁾ n ²] [psi]	redu [mm	ntion 1] [mil]	compressive stress at 3 mm (ultimate limit state)
	r	nin	n	nax	min	max	min	max	
XYL80080	104	76706	192	141612					
XYL80090	117	86295	216	159313					
XYL80100	130	95883	240	177015	1,3	2,4	0,3	0,57	19,51
XYL80120	156	115060	288	212418	189	348	12	22	2830
XYL80140	182	134236	336	247821					
XYL80160	208	153413	384	283224					

⁽¹⁾The load ranges reported here are optimised with respect to the acoustic and static behaviour of the material in compression. However, it is possible to use profiles with loads outside the indicated range if the resonance frequency of the system and the deformation of the profile at the ultimate limit state are assessed. See the manual for transmissibility and attenuation graphs.

⁽²⁾Resilient profiles must be properly loaded in order to isolate medium/low frequency vibrations transmitted structurally. It is advisable to assess the load according to the operating conditions because the building must be acoustically insulated under everyday load conditions (add the value of the permanent load to 50% of the characteristic value of the incidental load $Q_{linear} = q_{gk} + 0.5 q_{vk}$).

TECHNICAL DATA

Properties	standard	value	USC conversion
Acoustic improvement $\Delta_{lij}^{(3)}$	ISO 10848	> 7 dB	-
Elastic modulus in compression E_c (without friction $E_{c,lubricant}$)	ISO 844	25,39 MPa (13,18 MPa)	3683 psi (1912psi)
Dynamic elastic modulus evaluated at 1 Hz ${\rm E'}_{1{\rm Hz}}$ - ${\rm E''}_{1{\rm Hz}}$	ISO 4664-1	15,44 - 1,52 MPa	2239 - 220 psi
Dynamic elastic modulus evaluated at 5 Hz $\rm E'_{5Hz}$ - $\rm E''_{5Hz}$	ISO 4664-1	16,90 - 2,54 MPa	2451 psi - 368 psi
Dynamic elastic modulus evaluated at 10 Hz $\rm E'_{10Hz}$ - $\rm E''_{10Hz}$	ISO 4664-1	18,02 - 3,34 MPa	2614 - 484 psi
Dynamic elastic modulus evaluated at 50 Hz $\rm E'_{50Hz}$ - $\rm E''_{50Hz}$	ISO 4664-1	21,81 - 6,88 MPa	3163 - 998 psi
Damping factor evaluated at 1 Hz $tan\delta_{1Hz}$	ISO 4664-1	0,099	-
Damping factor evaluated at 5 Hz $tan\delta_{5Hz}$	ISO 4664-1	0,15	-
Damping factor evaluated at 10 Hz $tan\delta_{10Hz}$	ISO 4664-1	0,185	-
Damping factor evaluated at 50 Hz $tan\delta_{50Hz}$	ISO 4664-1	0,315	-
Creep Δε/ε ₁	ISO 8013/ ISO 16534	10,3	-
Compression set c.s.	ISO 1856	1,31%	-
Compression at 1 mm deformation σ_{1mm}	ISO 844	3,85 N/mm ²	558 psi
Compression at 2 mm deformation σ_{2mm}	ISO 844	9,52 N/mm ²	1381 psi
Compression at 3 mm deformation σ_{3mm}	ISO 844	19,51 N/mm ²	2830 psi
Dynamic stiffness s' ⁽⁴⁾	ISO 9052	2157 MN/m ³	
Max processing temperature (TGA)	-	200 °C	392 °F
Reaction to fire	EN 13501-1	class E	-
Water absorption after 48h	ISO 62	< 1 %	-
$^{(5)}\Delta_{l,ij} = K_{ij,with} - K_{ij,without}$			

 $^{(4)}L_{i,j} = \kappa_{ij,with} - \kappa_{ij,without}$ (4) ISO standards require for measurement with loads between 0.4 and 4 kPa and not with the product operating load.

PERFORMANCE

Acoustic improvement tested:

$$\Delta_{l,ij}^{(3)} : > 7 \, dB$$

1

Maximum applicable load (3 mm deformation):

19,51 N/mm²

Acoustic service load:

from 1,3 to 2,4 N/mm²

STRESS | DEFORMATION

COMPRESSION

DYNAMIC ELASTIC MODULUS E'

DMTA

🗕 1,0 Hz/MPa

🗕 5,0 Hz/MPa

🗕 10,0 Hz/MPa

CREEP

COMPRESSION

Relative deformation [% reduction in sample thickness]

TAN δ UNDER STRESS

→ 20,0 Hz/MPa → 33,3 Hz/MPa → 50,0 Hz/MPa

NATURAL FREQUENCY AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

Normalised with respect to the resonance frequency with f = 20 Hz.

DEFORMATION AND LOAD

TRANSMISSIBILITY

NATURAL FREQUENCY AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

DEFORMATION AND LOAD

TRANSMISSIBILITY

XYLOFON 90

TABLE OF USE^[1]

CODE		load for a optimisa [kN/m]	acoust ation ⁽² [lbf/ft]	ic)	compression optimis [N/mm	n for acoustic sation ⁽²⁾ n ²] [psi]	redu [mm	n] [mil]	compressive stress at 3 mm (ultimate limit state)
	r	nin	n	nax	min	max	min	max	
XYL90080	176	129811	360	265522					
XYL90090	198	146037	405	298713					
XYL90100	220	162264	450	331903	2,2	4,5	0,3	0,74	28,97
XYL90120	264	194716	540	398283	319	653	12	29	4202
XYL90140	308	227169	630	464664					
XYL90160	352	259622	720	531045					

⁽¹⁾The load ranges reported here are optimised with respect to the acoustic and static behaviour of the material in compression. However, it is possible to use profiles with loads outside the indicated range if the resonance frequency of the system and the deformation of the profile at the ultimate limit state are assessed. See the manual for transmissibility and attenuation graphs.

⁽²⁾Resilient profiles must be properly loaded in order to isolate medium/low frequency vibrations transmitted structurally. It is advisable to assess the load according to the operating conditions because the building must be acoustically insulated under everyday load conditions (add the value of the permanent load to 50% of the characteristic value of the incidental load $Q_{linear} = q_{gk} + 0.5 q_{vk}$).

TECHNICAL DATA

Properties	standard	value	USC conversion
Acoustic improvement $\Delta_{lij}^{(3)}$	ISO 10848	> 7 dB	-
Elastic modulus in compression E_c (without friction $E_{c,lubricant}$)	ISO 844	36,56 MPa (21,91 MPa)	5303 psi (3178psi)
Dynamic elastic modulus evaluated at 1 Hz ${\rm E'}_{1{\rm Hz}}$ - ${\rm E''}_{1{\rm Hz}}$	ISO 4664-1	32,2 - 6,9 MPa	4670 - 1001 psi
Dynamic elastic modulus evaluated at 5 Hz E'_{5Hz} - E''_{5Hz}	ISO 4664-1	39,89 - 12,23 MPa	5786 - 1774 psi
Dynamic elastic modulus evaluated at 10 Hz $\rm E'_{10Hz}$ - $\rm E''_{10Hz}$	ISO 4664-1	45,37 - 16,04 MPa	6580 - 2326 psi
Dynamic elastic modulus evaluated at 50 Hz E' _{50Hz} - E" _{50Hz}	ISO 4664-1	65,72 - 29,78 MPa	9532 - 4319 psi
Damping factor evaluated at 1 Hz $tan\delta_{1Hz}$	ISO 4664-1	0,214	-
Damping factor evaluated at 5 Hz $tan\delta_{5Hz}$	ISO 4664-1	0,307	-
Damping factor evaluated at 10 Hz $tan\delta_{10Hz}$	ISO 4664-1	0,354	-
Damping factor evaluated at 50 Hz $tan\delta_{50Hz}$	ISO 4664-1	0,453	-
Creep $\Delta \epsilon / \epsilon_1$	ISO 8013/ ISO 16534	0,28	-
Compression set c.s.	ISO 1856	2,02%	-
Compression at 1 mm deformation σ_{1mm}	ISO 844	5,83 N/mm ²	846 psi
Compression at 2 mm deformation σ_{2mm}	ISO 844	14,41 N/mm ²	2090 psi
Compression at 3 mm deformation σ_{3mm}	ISO 844	28,97 N/mm ²	4202 psi
Dynamic stiffness s' ⁽⁴⁾	ISO 9052	> 2200 MN/m ³	
Max processing temperature (TGA)	-	200 °C	392 °F
Reaction to fire	EN 13501-1	class E	-
Water absorption after 48h	ISO 62	< 1 %	-

(3) AL, ij = Kij, with - Kij, without.
 (4) ISO standards require for measurement with loads between 0.4 and 4 kPa and not with the product operating load.

PERFORMANCE

Acoustic improvement tested:

$$\Delta_{l,ij}^{(3)} : > 7 \, dB$$

Maximum applied load (3 mm deformation):

29,87 N/mm²

Acoustic service load:

from 2,2 to 4,5 N/mm²

STRESS | DEFORMATION

COMPRESSION

DMTA

🗕 1,0 Hz/MPa

🗕 5,0 Hz/MPa

🗕 10,0 Hz/MPa

CREEP

COMPRESSION

Relative deformation [% reduction in sample thickness]

TAN δ UNDER STRESS

DMTA Loss factor ↑

→ 20,0 Hz/MPa → 33,3 Hz/MPa → 50,0 Hz/MPa

NATURAL FREQUENCY AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

Normalised with respect to the resonance frequency with f = 20 Hz.

DEFORMATION AND LOAD

TRANSMISSIBILITY

NATURAL FREQUENCY AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

DEFORMATION AND LOAD

TRANSMISSIBILITY

THE CEN MODEL (EN ISO 12354)

The CEN model proposed in the EN ISO 12354 series of standards provides a powerful tool to predict the acoustic performance of a partition from the characteristics of the construction elements. The EN ISO 12354 series has been expanded to provide more specific information regarding timber frame and CLT structures.

EN ISO 12354-1:2017 Airborne sound insulation between rooms.

EN ISO 12354-2:2017 Impact sound soundproofing between rooms.

APPARENT SOUND REDUCTION INDEX

EN ISO 12354 norms provide two methods to calculate the acoustic performance of a partition: a detailed method and the simplified method. When using the simplified calculation model, disregarding the presence of small penetrations and airborne transmission paths $D_{n,j,w}$, the apparent sound reduction index R'_w can be calculated as the logarithmic sum of the direct component $R_{Dd,w}$ and the flanking transmission components $R_{ij,w}$.

$$R'_{w} = -10\log\left[10^{-\frac{R_{Dd,w}}{10}} + \sum_{i,j=1}^{n} 10^{-\frac{R_{ij,w}}{10}} + \frac{A_{0}}{S_{s}} \sum_{j=1}^{n} 10^{-\frac{D_{n,j,w}}{10}}\right] (dB)$$

The sound reduction index for flanking transmission paths Rij,w can be estimated as:

$$R_{ij,w} = \frac{R_{i,w} + R_{j,w}}{2} + \Delta R_{ij,w} + K_{ij} + 10\log \frac{S}{I_0 I_{ij}} (dB)$$

where:

- $R_{i,w} \mathrel{\text{e}} R_{j,w}$ are sound reduction evaluation indices of flanking elements i and j respectively;
- $\Delta R_i, \Delta R_j \qquad \text{are sound reduction index increases due to the installation} \\ \text{of architectural finishes for element i in the source envi-} \\ \text{ronment and/or element j in the receiving environment;}$

K_{ij} vibration reduction index through the joint

S is the area of the separating element and l_{ij} is the length of the joint between the separating wall and the flanking elements i and j, l_0 being a reference length of 1 m.

Among the input parameters required by the calculation model, the sound reduction indices can be obtained from accredited laboratory measurements or from the manufacturers of construction elements. Additionally, a number of open-access databases offer data for frequently used construction solutions. The ΔR_w can be estimated by modelling the wall assembly in terms of a mass-spring-mass system (EN ISO 12354 Annex D).

The most critical parameter to estimate is the **VIBRATION REDUCTION INDEX** K_{ij} . This quantity represents the vibration energy dissipating into the junction, and is associated with the structural coupling of the elements. High values of K_{ij} generate the best junction performance. Standard EN ISO 12354 provides some predictive estimates of two standard T and X-shaped joints for CLT structures, which are shown on the right, but the experimental data available is still limited. This is why Rothoblaas has invested in several measurement campaigns to provide usable data with this calculation model.

The ASTM standards currently do not provide a predictive model for the evaluation of flanking sound transmission, so the ISO 12354 and ISO 10848 standards are used and "translated" into the ASTM metric.

$$STC_{ij} = \frac{STC_i}{2} + \frac{STC_j}{2} + K_{ij} + max(\Delta STC_i, \Delta STC_i) + \frac{min(\Delta STC_i, \Delta STC_i)}{2} + 10\log \frac{S_s}{I_0 I_{ij}}$$

ASTM & K_{ii}

DETERMINING THE VIBRATION REDUCTION INDEX K_{IJ} IN TIMBER STRUCTURES

INCORPORATING OF RESILIENT LAYERS LIKE XYLOFON, PIANO, CORK AND ALADIN STRIPE

The MyProject software can be used during design, or follow one of the methods below, extrapolated from internationally valid standards.

METHOD 1 BASED ON EN ISO 12354:2017 FOR HOMOGENEOUS STRUCTURES

Typically, this formula has been considered for lightweight wood structures, i.e. considering the connections between elements, which are considered rigid and homogeneous. For CLT structures this is certainly an approximation.

Kij depends on the shape of the junction and the type of elements composing it, especially their surface mass. In case of T- or X-joints, use the following expressions, shown aside.

For both cases:

 $\mathsf{K}_{ij} = \mathsf{K}_{ijrigid} + \triangle \mathsf{L}$

if the flanking transmission path passes through a junction

 $K_{ij} = K_{ijrigid} + 2\Delta L$ if the flanking transmission path passes through two joints

M=10log(mi_/mi)

where:

 ${\sf mi}_{\perp}$

is the mass of one of the elements, the one placed perpendicular to the other.

Therefore, the transmitted vibration reduction value is:

∆Lw = 10log(1/ft)

for loads exceeding 750 kN/m² on a resilient layer with Δ Lmin = 5 dB $f_{t} = ((G/t_{i})(\sqrt{\rho_{1} \rho_{2}}))^{1,5}$

where:

G	is the Young tangential module (MN/m²)
t _i	is the thickness of the resilient material (m)
ρ_1 and ρ_2	are, respectively, the density of connected elements 1 and 2 $$

METHOD 2 F.3 EMPIRICAL DATA FOR JUNCTIONS CHARACTERIZED BY K_{ii} ISO 12354-1:2017

CLT construction elements are elements in which the structural reverberation time is, in most cases, mainly

determined by the connecting elements.

In the case of CLT structures weakly bound together, the side transmission contribution can be determined according to the following relations, valid if 0,5 < (m_1/m_2) < 2.

METHOD 1 - CALCULATING K

Solution 1 - T-SHAPED JOINT

Solution 2 - T-SHAPED JOINT with resilient layer

K₂₃= 5,7 + 14,1 M + 5,7 M² dB K₁₂= 5,7 + 5,7 M² = K₂₃ dB

Solution 3 - X-SHAPED JOINT

$$\begin{split} & \mathsf{K}_{13} = 8,7 + 17,1 \; \mathsf{M} + 5,7 \; \mathsf{M}^2 \; \mathsf{dB} \\ & \mathsf{K}_{12} = 8,7 + 5,7 \; \mathsf{M}^2 = \mathsf{K}_{23} \; \mathsf{dB} \\ & \mathsf{K}_{24} = 3,7 + 14,1 \; \mathsf{M} + 5,7 \; \mathsf{M}^2 \; \mathsf{dB} \\ & \mathsf{O} \leq \mathsf{K}_{24} \leq -4 \; \mathsf{dB} \end{split}$$

METHOD 2 - CALCULATING K_{ijrigid}

Solution 1 - T-SHAPED JOINT K_{13} = 22 + 3,3log(f/f_k)

 $f_k = 500 \text{ Hz}$ $K_{23} = 15 + 3,3 \log(f/f_{\nu})$

Solution 1 - X-SHAPED JOINT

 $K_{13} = 10 - 3,3 \log(f/f_k) + 10 M$ $K_{24} = 23 - 3,3 \log(f/f_k)$ $f_k = 500 Hz$ $K_{14} = 18 - 3,3 \log(f/f_k)$

THE SIMPLIFIED METHOD

A CALCULATION EXAMPLE USING EN ISO 12354

INPUT DATA

The EN ISO 12354 norms provide two methods to calculate the acoustic performance of a partition: a detailed method and the simplified method.

Regarding airborne sound insulation, the simplified calculation model predicts the apparent sound energy as a single value based on the acoustic performance of the elements involved in the junction. Below is an example of a calculation evaluating the apparent sound reduction index between two adjacent rooms.

In order to determine the acoustic performance of assembly from the acoustic performance of its components, it is important to determine for every junction element:

- the geometry of the assembly (S)
- the acoustic properties of the assembly $(\mathrm{R}_{_{\!\!\!\! w}})$
- the connection between structural elements (K_{ii})
- the characteristics of each layer composing the assembly

SECTION

PARTITION CHARACTERISTICS

SEPARATING WALL (S)

25 mm	plasterboard
50 mm	mineral wool
75 mm	CLT
50 mm	mineral wool
25 mm	plasterboard

INTERNAL WALLS 1

12,5 mm	gypsum	fibreboard
78 mm	CLT	
12,5 mm	gypsum	fibreboard

INTERNAL WALLS 2

75 mm	CLT
50 mm	mineral wool
25 mm	plasterboard

EXTERNAL WALLS 3 4

6 mm	plaster
60 mm	wood fibre panel
160 mm	mineral wool
90 mm	CLT
70 mm	fir panels
50 mm	mineral wool
15 mm	plasterboard
25 mm	plasterboard

FLOORS (5) (6) (7) (8)

concrete screed
PE membrane
under floor membrane
backfill (loose)
CLT
mineral wool
plasterboard

Data for acoustic characterisation of the assemblies was taken from DataHolz.

www.dataholz.com

CALCULATION OF DIRECT AND FLANKING TRANSMISSION COMPONENTS

The apparent sound reduction index is obtained from the contribution of the direct component and the flanking transmission paths, based on the following equation:

$$R'_{w} = -10\log\left[10^{-\frac{R_{Dd,w}}{10}} + \sum_{i,j=1}^{n} 10^{-\frac{R_{ij,w}}{10}} + \frac{A_{0}}{S_{s}} \sum_{j=1}^{n} 10^{-\frac{D_{n,j,w}}{10}}\right] (dB)$$

Considering only the first order transmission, there are three flanking transmission paths for each combination of assemblies i-j, for a total of 12 Rij calculated using the equation:

$$R_{ij,w} = \frac{R_{i,w} + R_{j,w}}{2} + \Delta R_{ij,w} + K_{ij} + 10\log \frac{S}{I_0 I_{ij}} (dB)$$

DETERMINING THE APPARENT SOUND REDUCTION INDEX

The simplified calculation model has the unquestioned advantage of providing an easy-to-use tool to predict sound insulation.

On the other hand, its application is quite delicate for CLT structures because the damping of each structural element is strongly affected by the assembly. It really deserves a dedicated modelling approach. Moreover, CLT panels provide poor insulation at low frequencies, thus the use of frequency weighted indices might return results which do not provide an accurate representation of actual behaviour in the low frequency region. Therefore the use of the detailed method is advised for accurate predictive analysis.

In the example provided, sound insulation for direct transmission gives R_w of 53 dB, if the contributions of flanking transmission are considered, R'w decreases to 51 dB.

ACOUSTIC CHARACTERISTICS OF THE ASSEMBLIES

Path of	S	R _w	mʻ
transmission	[m ²]	[dB]	[kg/m ²]
S	8,64	53	69
1	10,8	38	68
2	10,8	49	57
3	10,8	55	94
4	10,8	55	94
5	12,8	63	268
6	12,8	63	268
7	12,8	63	268
8	12,8	63	268

CALCULATING R_{ii}

Path of transmission	R _{ij} [dB]	Path of transmission	R _{ij} [dB]
1-S	60	S-6	83
3-S	68	S-8	75
5-S	83	1-2	64
7-S	75	3-4	77
S-2	66	5-6	75
S-4	68	7-8	75

CHARACTERISATION OF THE JOINTS

JOINT 1-2-S

X-shaped joint detail 12

JOINT 3-4-S

T-shaped joint, detail 5

JOINT 5-6-S

X-shaped joint with resilient profile detail 43

JOINT 7-8-S

X-shaped joint with resilient profile detail 43

Download all the documentation about the project from www.rothoblaas.com

Download all the documentation about the FLANKSOUND project! https://www.rothoblaas.com/technical-insights

FLANKSOUND PROJECT

EXPERIMENTAL MEASUREMENTS OF K_{ii} FOR CLT JOINTS

Rothoblaas has therefore promoted research aimed at measuring the K_{ij} vibration reduction index for a variety of CLT panel joints, with the dual objective of providing specific experimental data for the acoustic design of CLT buildings and contributing to the development of calculation methods.

L, T and X-shaped joints were tested during the measurement project.

CLT panels were provided by seven different manufacturers and therefore underwent different production processes, showing different characteristics such as the number and thickness of lamellas, side gluing of layers, and anti-shrinkage kerf cuts in the core. Different kinds of screws and connectors were tested, as well as different resilient layers at the wall-floor junction.

The test set-up was arranged in the warehouse at Rothoblaas headquarters in Cortaccia (prov. Bolzano).

The vibration reduction index measurements were carried out in compliance with EN ISO 10848.

* * * * EN ISO 10848

- 7 different CLT manufacturers
- L, T, X-shaped vertical and horizontal joints
- influence of type and number of screws
- influence of type and number of angle brackets
- influence of type and number of hold-downs
- use of resilient layers

FASTENING

HBS

VGZ

TITAN N

solid walls

countersunk screw

fully threaded screw

with cylindrical head

69711111111

TITAN F angle bracket for shear loads on frame walls

WHT angle bracket for tensile loads

SOUNDPROOFING

angle bracket for shear loads in

XYLOFON high performance resilient profile

ALADIN STRIPE resilient profile

CONSTRUCTION SEALING airtight profile

X-PLATE complete plates

X-RAD

X-ONE universal connector for CLT panels

X-PLATE complete range of connection plates

MEASUREMENT CONFIGURATION

MEASUREMENT SETUP: EQUIPMENT AND DATA PROCESSING

The vibration reduction index Kij is calculated as:

$$K_{ij} = \frac{D_{v,ij} + D_{v,ji}}{2} + 10\log \frac{I_{ij}}{\sqrt{a_i a_i}} (dB)$$

where:

D _{v,ij} (D _{v,ji})	is the difference in vibration velocity between the ele- ments i and j (j and i) when element i (j) is excited (dB)
l _{ij}	is the length of the junction shared between the elements $\ensuremath{\mathbf{i}}$ and $\ensuremath{\mathbf{j}}$

a are the equivalent absorption lengths elements of i and j

$$a = \frac{2.2\pi^2 S}{c_0 T_s} \sqrt{\frac{f_{ref}}{f}} (m)$$

S	is the panel surface
f	is the frequency
Ts	is the structural reverberation time

The sound source consisted of an electrodynamic shaker with sinusoidal peak force of 200 N, which was mounted on a heavyweight base and screwed to the CLT panels using a plate.

The velocity levels were measured using a pink noise source signal, filtered at 30 Hz in order to get reliable results from 50 Hz onwards. Structural reverberation times were calculated from impulse responses acquired using ESS test signals. The accelerometers were fixed to the panels using magnets. Eyelets were screwed to the panels with screws whose length was at least half of the thickness of the panels, in order to reach the innermost layer of the panel. The vibration reduction indices are reported in the one-third octave bands ranging from 100 to 3150 Hz, together with the value averaged over the one-third octave bands from 200 to 1250 Hz.

A. Speranza, L. Barbaresi, F. Morandi, " **Experimental analysis of flanking transmission of different connection systems for CLT panels** " in Proceedings of the World Conference on Timber Engineering 2016, Vienna, August 2016.

L. Barbaresi, F. Morandi, M. Garai, A. Speranza, "**Experimental measurements of flanking transmission in CLT structures**" in Proceedings of the International Congress on Acoustics 2016, Buenos Aires, September 2016.

L. Barbaresi, F. Morandi, M. Garai, A. Speranza, "**Experimental analysis of flankng transmission in CLT structures**" of Meetings on Acoustics (POMA), a serial publication of the Acoustical Society of America - POMA-D-17-00015

L. Barbaresi, F. Morandi, J. Belcari, A. Zucchelli, Alice Speranza, "**Optimising the mechanical characterisation of a resilient interlayer for the use in timber construction**" in Proceedings of the International congress on sound and vibration 2017, London, July 2017

floor: CLT 5 layers (s: 160 mm- *6* 1/4 *in*) (2,3 m x 4,0 m - *7.55 ft x* 13.12 *ft*) lower wall: CLT 5 layers (s: 100 mm - 4 *in*) (4,0 m x 2,3 m - 13.12 *ft x* 7.55 *ft*)

FASTENING SYSTEM 13 **HBS** partially threaded screws Ø8 x 240 mm (HBS8240), spacing 300 mm (*11 3/4 in*)

RESILIENT PROFILE

XYLOFON 35

position: between the lower wall and the floor. dimensions: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 4,0 m (13.12 ft) contact area: continuous strip (same width as the wall) applied load [kN]: structure self weight

STRUCTURE floor: CLT 5 layers (s: 160 mm- 6 1/4 in) (2,3 m x 4,0 m - 7.55 ft x 13.12 ft) lower wall: CLT 5 layers (s: 100 mm - 4 in) (4,0 m x 2,3 m - 13.12 ft x 7.55 ft)

FASTENING SYSTEM

6 HBS partially threaded screws Ø9 x 400 mm (HBS8240), spacing 600 mm (23 5/8 in)

RESILIENT PROFILE

XYLOFON 35

position: between the lower wall and the floor. dimensions: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 4,0 m (13.12 ft) contact area: continuous strip (same width as the wall) applied load [kN]: structure self weight

floor: CLT 5 layers (s: 160 mm- *6 1/4 in*) (2,3 m x 4,0 m - *7.55 ft x 13.12 ft*) lower wall: CLT 5 layers (s: 100 mm - *4 in*) (4,0 m x 2,3 m - *13.12 ft x 7.55 ft*)

FASTENING SYSTEM

13 **HBS** partially threaded screws Ø8 x 240 mm (HBS8240), spacing 300 mm (*11 3/4 in*) 5 angle brackets **TITAN** (TTN240) spacing 800 mm (*31 1/2 in*) fastening pattern: total nailing 72 screws Ø5 x 50 mm 2 hold down **WHT** (WHT440)

RESILIENT PROFILE

XYLOFON 35

position: between the lower wall and the floor. dimensions: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 4,0 m (13.12 ft) contact area: continuous strip (same width as the wall) applied load [kN]: structure self weight

K₁₂ = **11,8 dB**

STRUCTURE floor: CLT 5 layers (s: 160 mm- 6 1/4 in) (2,3 m x 4,0 m - 7.55 ft x 13.12 ft) lower wall: CLT 5 layers (s: 100 mm - 4 in) (4,0 m x 2,3 m - 13.12 ft x 7.55 ft)

FASTENING SYSTEM

13 **HBS** partially threaded screws Ø8 x 240 mm (HBS8240), spacing 300 mm (*11 3/4 in*) 5 angle brackets **TITAN** (TTN240) with resilient profile **XYLOFON PLATE** (XYL35120240) spacing 800 mm (*31 1/2 in*) fastening pattern: total nailing 72 screws Ø5 x 50 mm 2 hold down **WHT** (WHT440)

RESILIENT PROFILE

XYLOFON 35 + XYLOFON PLATE

position: between the lower wall and the floor. dimensions: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 4,0 m (13.12 ft) contact area: continuous strip (same width as the wall) applied load [kN]: structure self weight

 $\overline{K_{12}} = 12,6 \text{ dB}$

floor: CLT 5 layers (s: 160 mm- 6 1/4 in) (2,3 m x 4,0 m - 7.55 ft x 13.12 ft) lower wall: CLT 5 layers (s: 100 mm - 4 in) (4,0 m x 2,3 m - 13.12 ft x 7.55 ft)

FASTENING SYSTEM

6 **HBS** partially threaded screws Ø9 x 400 mm (HBS8240), spacing 600 mm (*23 5/8 in*) 5 angle brackets **TITAN** (TTN240) spacing 800 mm (*31 1/2 in*) fastening pattern: total nailing 72 screws Ø5 x 50 mm 2 hold down **WHT** (WHT440)

RESILIENT PROFILE

XYLOFON 35

position: between the lower wall and the floor. dimensions: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 4,0 m (13.12 ft) contact area: continuous strip (same width as the wall) applied load [kN]: structure self weight

T-SHAPED JOINT EN ISO 10848-1/4

STRUCTURE STRUCTURE

upper wall: CLT 5 layers (s: 100 mm- 4 in) (2,3 m x 3,5 m- 7.55 ft x 11 ft) floor: CLT 5 layers (s: 160 mm- 6 1/4 in) (2,3 m x 3,5 m- 7.55 ft x 11 ft), lower wall: CLT 5 layers (s: 100 mm- 4 in) (2,3 m x 4,0 m- 7.55 ft x 13.12 ft)

FASTENING SYSTEM

7 **HBS** partially threaded screws Ø8 x 240 mm (HBS8240), spacing 300 mm (*11 3/4 in*) 3 angle brackets **TITAN** (TTN240), spacing 800 mm (*31 1/2 in*) fastening pattern: total nailing 72 screws Ø5 x 50 mm 4 hold down **WHT** (WHT440)

RESILIENT PROFILE

XYLOFON 35

position: between the lower wall and the floor. dimensions: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 4,0 m (13.12 ft) contact area: continuous strip (same width as the wall) applied load [N/m²]: structure self weight

*data estimated based on experimental measurements

upper wall: CLT 5 layers (s: 100 mm- 4 in) (2,3 m x 3,5 m- 7.55 ft x 11 ft) floor: CLT 5 layers (s: 160 mm- 6 1/4 in) (2,3 m x 3,5 m- 7.55 ft x 11 ft), lower wall: CLT 5 layers (s: 100 mm- 4 in) (2,3 m x 4,0 m- 7.55 ft x 13.12 ft)

FASTENING SYSTEM

7 HBS partially threaded screws Ø8 x 240 mm (HBS8240), spacing 300 mm (11 3/4 in) 3 angle brackets TITAN (TTN240) with resilient profile XYLOFON PLATE (XYL35120240) spacing 800 mm (31 1/2 in) fastening pattern: total nailing 72 screws Ø5 x 50 mm 4 hold down WHT (WHT440)

RESILIENT PROFILE

XYLOFON 35 + XYLOFON PLATE

position: between the lower wall and the floor. dimensions: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 4,0 m (13.12 ft) contact area: continuous strip (same width as the wall) applied load [N/m²]: structure self weight

 $\overline{K_{12}} = 11,4 \text{ dB}$

upper wall: CLT 5 layers (s: 100 mm- 4 in) (2,3 m x 3,5 m- 7.55 ft x 11 ft) floor: CLT 5 layers (s: 160 mm- 6 1/4 in) (2,3 m x 3,5 m- 7.55 ft x 11 ft), lower wall: CLT 5 layers (s: 100 mm- 4 in) (2,3 m x 4,0 m- 7.55 ft x 13.12 ft)

FASTENING SYSTEM

7 **HBS** partially threaded screws Ø8 x 240 mm (HBS8240), spacing 300 mm (*11 3/4 in*) 3 angle brackets **TITAN** (TTN240) with resilient profile **XYLOFON PLATE** (XYL35120240) spacing 800 mm (*31 1/2 in*) fastening pattern: total nailing 72 screws Ø5 x 50 mm 2 **LBV** perforated plates (LBV100500)

RESILIENT PROFILE

XYLOFON 35 + XYLOFON PLATE

position: between the lower wall and the floor.
dimensions: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 4,0 m (13.12 ft)
contact area: continuous strip (same width as the wall)
applied load [N/m²]: structure self weight

2									300							
f[Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K ₁₂ [dB]	17,4	13,1	7,0	11,1	10,8	11,5	10,5	15,6	20,4	22,4	21,9	24,7	24,5	38,4	38,6	41,0
						K ₁	_ 2 = 1	.6,6	dB							
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₂₄ [dB]	23,9	24,5	18,3	20,6	16,3	18,2	19,4	19,6	25,7	27,2	25,6	21,9	24,5	41,7	44,9	49,0
						К ₂ ,	- 4 = 2	21,6	dB							
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K ₁₄ [dB]	7,1	- 3,1	- 2,5	6,2	6,0	6,4	0,7	9,7	9,5	12,5	12,7	19,3	16,8	21,8	25,2	27,2

 $\overline{K_{14}} = 9,2 dB$

Data estimated based on experimental measurements.

upper wall: CLT 5 layers (s: 100 mm- 4 in) (2,3 m x 3,5 m- 7.55 ft x 11 ft) floor: CLT 5 layers (s: 160 mm- 6 1/4 in) (2,3 m x 7,5 m- 7.55 ft x 25 ft) lower wall: CLT 5 layers (s: 100 mm- 4 in) (2,3 m x 4,0 m- 7.55 ft x 13.12 ft)

FASTENING SYSTEM

7 **HBS** partially threaded screws Ø8 x 240 mm (HBS8240), spacing 300 mm (*11 3/4 in*) 3 angle brackets **TITAN** (TTN240) with resilient profile **XYLOFON PLATE** (XYL35120240) spacing 800 mm (*31 1/2 in*) fastening pattern: total nailing 72 screws Ø5 x 50 mm 4 hold down **WHT** (WHT440)

RESILIENT PROFILE

XYLOFON 35 + XYLOFON PLATE

position: between the lower wall and the floor.
dimensions: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 4,0 m (13.12 ft)
contact area: continuous strip (same width as the wall)
applied load [N/m²]: structure self weight

f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₂₄ [dB]	25,4	22,8	17,0	23,5	19,9	21,2	17,9	24,2	28,6	30,5	30,9	29,7	32,9	43,1	45,3	49,2

 $\overline{K_{24}} = 25,2 \text{ dB}$

*data estimated based on experimental measurements

uupper wall: CLT 5 layers (s: 100 mm- 4 in) (2,3 m x 3,5 m- 7.55 ft x 11 ft) floor: CLT 5 layers (s: 160 mm- 6 1/4 in) (2,3 m x 7,5 m- 7.55 ft x 25 ft) lower wall: CLT 5 layers (s: 100 mm- 4 in) (2,3 m x 4,0 m- 7.55 ft x 13.12 ft)

FASTENING SYSTEM

6 angle brackets **TITAN** (TTN240) with resilient profile **XYLOFON PLATE** (XYL35120240) spacing 800 mm (*31 1/2 in*) fastening pattern: 72 screws Ø5 x 50 mm 4 hold down **WHT** (WHT440)

RESILIENT PROFILE

XYLOFON 35 + XYLOFON PLATE

position: between the lower wall and the floor.
dimensions: width = 100 mm (4 in) thickness = 6 mm (1/4 in) length = 4,0 m (13.12 ft)
contact area: continuous strip (same width as the wall)
applied load [N/m²]: structure self weight

4 3 2 100	1]160														
f[Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₂₄ [dB]	24,6	28,1	17,5	19,7	19,0	15,2	11,6	15,6	17,7	23,0	25,0	27,6	30,4	32,4	35,0	33,5
						K ₂₄	- 4 = 1	.9,4	dB							
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₁₂ [dB]	19,6	23,1	12,5	14,7	14,0	10,2	6,6	10,6	12,7	18,0	20,0	22,6	25,4	27,4	30,0	28,5
						K ₁₂	$\frac{1}{2} = 1$	4,4	dB							
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K ₁₃ [dB]	10,3	10,0	9,6	9,3	9,0	8,6	8,3	8,0	7,6	7,3	7,0	6,7	6,3	6,0	5,7	5,3

K₁₃ = **8,0 dB**

*data estimated based on experimental measurements.

SOUND REDUCTION INDEX AND IMPACT SOUND LEVEL

A predictive study of the sound insulation of airborne and impact noise in buildings cannot be determined by calculations alone, but must be supported by experimental data and measurements in the laboratory and on site.

In mass timber construction, as in light-framed construction, the contribution of flanking sound transmission can be significant and it is important to be able to estimate this correctly because regulations require compliance with passive acoustic requirements measured on site. For this reason, the analysis of the assembly of the separating element cannot be limited, but also the behavior of the resilient profiles must be considered.

In the laboratory in Innsbruck, the upper floor and the ceiling can be raised by up to 30 cm by means of hydraulic jacks, in order to carry out tests, with and without XYLOFON, and thus test its effectiveness.

The laboratory also provides the possibility of loading the structure with threaded tie rods to simulate different loads (e.g. several floors). For the tests, a load of 17 kN/m (approximately one floor) was applied to the ceiling element and thus also XYLOFON 35

SET UP

The receiving and transmitting rooms have a floor area of $21,5 \text{ m}^2$ (5,24 m lenght; 4,10 m width).

The volume of the transmitting room is 53,0 $\rm m^3$, and the volume of the receiving room 85,0 $\rm m^3$.

The floor (1) is made of 160 mm 5-layer CLT, while the walls (2) are made of 100 mm 5-layer CLT panels.

The floor was fixed with **HBS** 6 x 240 mm screws at a distance of 300 mm and 10 **TITAN** (3)TTN240 angle brackets with **LBS** 5 x 70 screws (72 screws each angle bracket).

NOTE: a blower door test was performed prior to measurement to prevent air leaks from affecting the measurement results.

THE RESULTS

For the evaluation of flanking sound transmission, both the dodecahedron and the impact sound machine were used as sources, while accelerometers were applied to the wall in the receiving room.

The results obtained were implemented in the formula shown below to determine $\mathsf{R}_{ij,situ}$

R S(0) = LS (f) - Lb (f) - K56 + 20log (f in Hz) - 10log (1)

where:

sound pressure level in the transmitting room, function of frequency [dB].
flanking sound pressure level, function of frequency [dB].
accelerometer calibration coefficient
frequency [Hz]
radiation coefficient, function of frequency

$\Delta R_{Df+Ff,situ} = 5 dB$

 $\Delta STC_{Df+Ff,situ} = 4 \, dB$

 $\Delta L_{n,Df+Ff,situ} = 7 dB$ $\Delta IIC_{Df+Ff,situ} = 7 dB$

$\Delta R_{Df+Ff,situ} = 10 dB$

 $\Delta STC_{Df+Ff,situ} = 10 \, dB$

 $\Delta L_{n,Df+Ff,situ} = 8 dB$ $\Delta IIC_{Df+Ff,situ} = 8 dB$

reduction of flanking airborne sound transmission

reduction of flanking impact sound transmission

A. Kraler, P. Brugnara, "Acoustic behaviour of CLT structures: influence of decoupling bearing stripes, floor assembly and connectors under storey-like loads", Internoise Glasgow 21-24 August 2022

AIRBORNE SOUND INSULATION ACCORDING TO ISO 16283-1

Surface = 21,64 m² **Mass** = 167 kg/ m² **Receiving room volume** = 75,52 m³

(1) reinforced gypsum-fibre board (44 kg/m²) (s: 32 mm-11/4 in)

- (2) high density cardboard and sand panels (34,6 kg/m²) (s: 30 mm- 1 3/16
- in)

(3) SILENT FLOOR PUR (s: 10 mm- 3/8 in)

(4) CLT (s: 160 mm- 6 1/4 in)

5 XYLOFON

6 TITAN SILENT

(7) CLT (s: 160 m- 6 1/4 in)

AIRBORNE SOUND INSULATION

Testing laboratory: Universität Innsbruck0Arbeitsbereich für Holzbau0Technikerstraße 13A - 602 Innsbruck. **Test protocol:** M03B_L211217_m-Bodenaufbau.

ON-SITE MEASUREMENT | CLT FLOOR AIRBORNE FLANKING TRANSMISSION ACCORDING TO ISO 16283-1

Surface = 21,64 m² Mass = 167 kg/ m² Receiving room volume = 75,52 m³

reinforced gypsum-fibre board (44 kg/m²) (s: 32 mm- 1 1/4 in)
 high density cardboard and sand panels (34,6 kg/m²) (s: 30 mm- 1 3/16 in)
 SILENT FLOOR PUR (s: 10 mm- 3/8 in)
 CLT (s: 160 mm- 6 1/4 in)
 XYLOFON

6 TITAN SILENT

(7) CLT (s: 160 m- 6 1/4 in)

AIRBORNE FLANKING TRANSMISSION

Testing laboratory: Universität Innsbruck0Arbeitsbereich für Holzbau0Technikerstraße 13A - 602 Innsbruck. **Test protocol:** M03B_L211217_m-Bodenaufbau

AIRBORNE SOUND INSULATION ACCORDING TO ISO 16283-1

Surface = 21,64 m² Mass = 167 kg/ m² Receiving room volume = 75,52 m³

(1) reinforced gypsum-fibre board (44 kg/m²) (s: 32 mm- 11/4 in)

- (2) high density cardboard and sand panels (34,6 kg/m²) (s: 30 mm- 1 3/16
- in)

(3) SILENT FLOOR PUR (s: 10 mm- 3/8 in)

(4) CLT (s: 160 mm- 6 1/4 in)

- (5) XYLOFON
- 6 TITAN SILENT

(7) CLT (s: 160 m- 6 1/4 in)

AIRBORNE SOUND INSULATION

Testing laboratory: Universität Innsbruck0Arbeitsbereich für Holzbau0Technikerstraße 13A - 6020 Innsbruck. Test protocol: M07B_L211217_m-Bodenaufbau

ON-SITE MEASUREMENT | CLT FLOOR AIRBORNE FLANKING TRANSMISSION ACCORDING TO ISO 16283-1

Surface = 21,64 m² Mass = 167 kg/ m² Receiving room volume = 75,52 m³

reinforced gypsum-fibre board (44 kg/m²) (s: 32 mm- 1 1/4 in)
 high density cardboard and sand panels (34,6 kg/m²) (s: 30 mm- 1 3/16 in)
 SILENT FLOOR PUR (s: 10 mm- 3/8 in)
 CLT (s: 160 mm- 6 1/4 in)
 XYLOFON

6 TITAN SILENT

(7) CLT (s: 160 m- 6 1/4 in)

AIRBORNE FLANKING TRANSMISSION

Testing laboratory: Universität Innsbruck0Arbeitsbereich für Holzbau0Technikerstraße 13A - 602 Innsbruck. **Test protocol:** M07B_T210517_o-Bodenaufbau

IMPACT SOUND INSULATION ACCORDING TO ISO 16283-1

Surface = $21,64 \text{ m}^2$ Mass = 72 kg/m² **Receiving room volume** = 75,52 m³

(1) CLT (s: 160 mm- 6 1/4 in) (3) TITAN SILENT

Impact sound NOISE INSULATION

Testing laboratory: Universität Innsbruck0Arbeitsbereich für Holzbau0Technikerstraße 13A - 602 Innsbruck. Test protocol: M06A_T210517_o-Bodenaufbau.

IMPACT FLANKING TRANSMISSION ACCORDING TO ISO 16283-1

Surface = 21,64 m² Mass = 167 kg/ m² Receiving room volume = 75,52 m³

CLT (s: 160 mm- 6 1/4 in)
 XYLOFON
 TITAN SILENT

■ IMPACT FLANKING TRANSMISSION

Testing laboratory: Universität Innsbruck0Arbeitsbereich für Holzbau0Technikerstraße 13A - 602 Innsbruck. **Test protocol:** M06A_T210517_o-Bodenaufbau

IMPACT SOUND INSULATION ACCORDING TO ISO 16283-1

Surface = 21,64 m² Mass = 72 kg/ m² Receiving room volume = 75,52 m³

CLT (s: 160 mm- 6 1/4 in)
 XYLOFON
 TITAN SILENT

Impact sound NOISE INSULATION

Testing laboratory: Universität Innsbruck0Arbeitsbereich für Holzbau0Technikerstraße 13A - 602 Innsbruck. **Test protocol:**M07A_T210517_o-Bodenaufbau

IMPACT FLANKING TRANSMISSION ACCORDING TO ISO 16283-1

Surface = 21,64 m² **Mass** = 167 kg/ m² **Receiving room volume** = 75,52 m³

CLT (s: 160 mm- 6 1/4 in)
 XYLOFON
 TITAN SILENT

■ IMPACT FLANKING TRANSMISSION

Testing laboratory: Universität Innsbruck0Arbeitsbereich für Holzbau0Technikerstraße 13A - 602 Innsbruck. **Test protocol:** M07A_T210517_o-Bodenaufbau

ON SITE MEASUREMENTS

The effectiveness of XYLOFON was also verified by measuring passive acoustic requirements in constructed buildings. XYLOFON has been used in residential buildings, accommodation facilities, university campuses, schools, health centres and mixed-use multi-storey buildings.

The performance achieved did not disappoint expectations and XYLOFON proved to be an excellent partner for reducing flanking sound transmission.

MARIE CURIE SCHULE

Frankfurt (DE)

description	building for school use
type of structure	CLT panels
location	Frankfurt (Germany)
products	XYLOFON

MULTI-STOREY BUILDING

Toronto (CA)

description	6-storey building for residential use
type of structure	CLT panels
location	Toronto (Canada)
products	XYLOFON, ALADIN

SOLHØY

Østlandet (NO)

description	health centre consisting of 67 health-care flats with attached user services
type of structure	CLT panels
location	Østlandet (Norway)
products	XYLOFON

LA BRIOSA HOTEL

Trentino Alto Adige (IT)

description	7-storey building for accommodation use
type of structure	CLT panels
location	Trentino Alto Adige (Italy)
products	XYLOFON, ALADIN, TITAN SILENT

AIRBORNE SOUND INSULATION ACCORDING TO ISO 10140-2

FLOOR SLAB

Surface = 31,17 m² **Mass** = 418,3 kg/m² **Receiving room volume** = 78,4 m³

① Concrete screed (2400 kg/m³⁾ (s: 60 mm - *2 3/8 in*)

2 BARRIER 150

(3) Mineral wool insulation s' \leq 10 MN/m³ (110 kg/m³) (s: 30 mm - 1 3/16 in)

(4)Compact gravel fill with cement (1800 kg/m³) (s: 80 mm - 3 1/8 in)

(5) SILENT FLOOR BYTUM (s: 5 mm - 8 mil)

6 CLT (s: 160 mm - 6 1/4 in)

(7) Resilient plasterboard connectors (s: 60 mm - 2 3/8 in)

(8) Metal structure for plasterboard

(9) Air chamber (s: 10 mm - 3/8 in)

10 Low density mineral wool insulation (25 kg/m³) (s: 50 mm - 2 in)

(11) Plasterboard panel x2 (s: 25 mm - 1 in)

12 XYLOFON

13 SILENT EDGE

14 Fastening system:

HBS 8 x 240 mm, 300 mm (*11 3/4 in*) spacing TITAN SILENT 800 mm (*31 1/2 in*) spacing

Testing laboratory: Akustik Center Austria, Holzforschung Austria. Test protocol: 2440_01_2017_M01.

AIRBORNE SOUND INSULATION

IMPACT SOUND INSULATION ACCORDING TO ISO 10140-3

FLOOR SLAB

Surface = 31,17 m² Mass = 418,3 kg/m² Receiving room volume = 78,4 m³

- ① Concrete screed (2400 kg/m³⁾ (s: 60 mm *2 3/8 in*)
- 2 BARRIER 150
- (3) Mineral wool insulation s' \leq 10 MN/m³ (110 kg/m³) (s: 30 mm 1 3/16 in)
- (4)Compact gravel fill with cement (1800 kg/m³) (s: 80 mm 3.15 i)
- (5) SILENT FLOOR BYTUM (s: 5 mm 8 mil)
- 6 CLT (s: 160 mm 6 1/4 in)
- 7 Resilient plasterboard connectors (s: 60 mm 2 3/8 in)
- 8 Metal structure for plasterboard
- 9 Air chamber (s: 10 mm 3/8 in)
- (10) Low density mineral wool insulation (25 kg/m³) (s: 50 mm 2 in)
- (1) Plasterboard panel x2 (s: 25 mm 1 in)
- 12 XYLOFON
- **13 SILENT EDGE**
- (14) Fastening system:
 - HBS 8 x 240 mm, 300 mm (*11 3/4 in*) spacing TITAN SILENT 800 mm (*31 1/2 in*) spacing

Testing laboratory: Akustik Center Austria, Holzforschung Austria. Test protocol: 2440_01_2017_M01.

AIRBORNE SOUND INSULATION ACCORDING TO ISO 10140-2

FLOOR SLAB

Surface = 31,17 m² **Mass** = 418,3 kg/m² **Receiving room volume** = 78,4 m³

- (1) Concrete screed (2400 kg/m³⁾ (s: 60 mm *2 3/8 in*)
- 2 BARRIER 150
- (3) Mineral wool insulation s' \leq 10 MN/m³ (110 kg/m³) (s: 30 mm 1 3/16 in)
- (4)Compact gravel fill with cement (1800 kg/m³) (s: 80 mm 3 1/8 in)
- (5) SILENT FLOOR BYTUM (s: 5 mm 8 mil)
- 6 CLT (s: 160 mm 6 1/4 in)
- 7 Resilient plasterboard connectors (s: 60 mm 2 3/8 in)
- (8) Metal structure for plasterboard
- (9) Air chamber (s: 10 mm- 3/8 in)
- (10) Low density mineral wool insulation (25 kg/m³) (s: 50 mm 2 in)
- (11) Plasterboard panel (s: 12,5 mm- 1/2 in)

12 XYLOFON

- 13 SILENT EDGE
- 14 Fastening system:
 - HBS 8 x 240 mm, 300 mm (*11 3/4 in*) spacing TITAN SILENT 800 mm (*31 1/2 in*) spacing

Testing laboratory: Akustik Center Austria, Holzforschung Austria. Test protocol: 2440_03_2017_M02.

AIRBORNE SOUND INSULATION

IMPACT SOUND INSULATION ACCORDING TO ISO 10140-3

FLOOR SLAB

Surface = 31,17 m² Mass = 418,3 kg/m² Receiving room volume = 78,4 m³

- ① Concrete screed (2400 kg/m³⁾ (s: 60 mm *2.36 i*)
- 2 BARRIER 150
- (3) Mineral wool insulation s' \leq 10 MN/m³ (110 kg/m³) (s: 30 mm 1 3/16 in)
- (4)Compact gravel fill with cement (1800 kg/m³) (s: 80 mm 3 1/8 in)
- (5) SILENT FLOOR BYTUM (s: 5 mm 8 mil)
- 6 CLT (s: 160 mm 6 1/4 in)
- 7 Resilient plasterboard connectors (s: 60 mm- 2.36 i)
- 8 Metal structure for plasterboard
- (9) Air chamber (s: 10 mm- 3/8 in)
- (10) Low density mineral wool insulation (25 kg/m³) (s: 50 mm 2 in)
- (1) Plasterboard panel x2 (s: 25 mm-1 in)

12 XYLOFON

- 13 SILENT EDGE
- (14) Fastening system:
 - HBS 8 x 240 mm, 300 mm (*11 3/4 in*) spacing TITAN SILENT 800 mm (*31 1/2 in*) spacing

Testing laboratory: Akustik Center Austria, Holzforschung Austria. Test protocol: 2440_03_2017_M02.

XYLOFON | XYLOFON | 77

AIRBORNE SOUND INSULATION ACCORDING TO ISO 10140-2

FLOOR SLAB

Surface = 31,17 m² **Mass** = 418,3 kg/m² **Receiving room volume** = 78,4 m³

Concrete screed (2400 kg/m³) (s: 60 mm - 2 3/8 in)
 BARRIER 150
 Mineral wool insulation s' ≤ 10 MN/m³ (110 kg/m³) (s: 30 mm - 1 3/16 in)
 Compact gravel fill with cement (1800 kg/m³) (s: 80 mm - 3 1/8 in)
 SILENT FLOOR BYTUM (s: 5 mm - 8 mil)
 CLT (s: 160 mm - 6 1/4 in)
 XYLOFON

R

[dB]

15,5

27,8

35,3

46,1

43,8

45.7

47,6 46,4

45,8

44,9

46,6 47,4

50,3

55,7

58,2

61,6

62,8

64,8

66,6

69,6

71,6 **53**

8 SILENT EDGE

(9) Fastening system:

HBS 8 x 240 mm, 300 mm (*11 3/4 in*) spacing TITAN SILENT 800 mm (*31 1/2 in*) spacing

AIRBORNE SOUND INSULATION

Testing laboratory: Akustik Center Austria, Holzforschung Austria. Test protocol: 2440_05_2017_M03.

IMPACT SOUND INSULATION ACCORDING TO ISO 10140-3

FLOOR SLAB

Surface = 31,17 m² **Mass** = 418,3 kg/m² **Receiving room volume** = 78,4 m³

Concrete screed (2400 kg/m³) (s: 60 mm - 2 3/8 in)
 BARRIER 150
 Mineral wool insulation s' ≤ 10 MN/m³ (110 kg/m³) (s: 30 mm - 1 3/16 in)
 Compact gravel fill with cement (1800 kg/m³) (s: 80 mm - 3 1/8 in)
 SILENT FLOOR BYTUM (s: 5 mm - 8 mil)
 CLT (s: 160 mm - 6 1/4 in)

8 SILENT EDGE

(9) Fastening system: HBS 8 x 240 mm, 300 mm (11 3/4 in) spacing

TITAN SILENT 800 mm (31 1/2 in) spacing

IMPACT SOUND INSULATION

Testing laboratory: Akustik Center Austria, Holzforschung Austria. Test protocol: 2440_06_2017_M03.

ON-SITE MEASUREMENT | CLT FLOOR 5 AIRBORNE SOUND INSULATION ACCORDING TO ISO 140-4

FLOOR SLAB

Surface = 35,14 m² Mass = 384 kg/m² Receiving room volume = 88 m³

- 1 Timber floor (s: 15 mm 9/16 in)
- (2) SILENT STEP (s: 2 mm 8 mil)
- (3) In-floor heating system (s: 70 mm 2 3/4 in)

4 BARRIER 150

- (5) Mineral wool insulation s' $\leq 10~\text{MN/m}^3$ (110 kg/m³) (s: 30 mm 1 3/16 in)
- 6 Compact gravel fill (s: 85 mm 3 3/8 in)
- (7) CLT (s: 150 mm 6 in)
- (8) Solid wood batten with resilient connectors
- (9) Air chamber (s: 6 mm 1/4 in)
- (10) Low density mineral wool insulation (25 kg/m³) (s: 40 mm 1 9/16 in)
- (11) Fir covering (s: 19 mm *3/4 in*)

12 XYLOFON

- (13) Fastening system:
 - HBS 8 x 240 mm, 300 mm (*11 3/4 in*) spacing TITAN SILENT 1000 mm (*40 in*) spacing

AIRBORNE SOUND INSULATION

D_{nT,w} (C;C_{tr}) = **63 (-3; -10) dB**

NNIC = 64

Testing laboratory: INGENIEURBÜRO ROTHBACHER GmbH. Test protocol: 17-466.

ON-SITE MEASUREMENT | CLT FLOOR 5 IMPACT SOUND INSULATION ACCORDING TO ISO 10140-3

FLOOR SLAB

Surface = 35,14 m² Mass = 384 kg/m² Receiving room volume = 88 m³

- 1 Timber floor (s: 15 mm 9/16 in)
- 2 SILENT STEP (s: 2 mm 8 mil)
- (3) In-floor heating system (s: 70 mm 2 3/4 in)

4 BARRIER 100

- (5) Mineral wool insulation s' \leq 10 MN/m³ (110 kg/m³) (s: 30 mm 1 3/16 in)
- 6 Compact gravel fill (s: 85 mm 3 3/8 in)
- (7) CLT (s: 150 mm 6 in)
- 8 Solid wood batten with resilient connectors
- (9) Air chamber (s: 6 mm 1/4 in)
- (10) Low density mineral wool insulation (25 kg/m³) (s: 40 mm 1 9/16 in)
- (11) Fir covering (s: 19 mm *3/4 in*)

12 XYLOFON

- (13) Fastening system:
 - HBS 8 x 240 mm, 300 mm (*11 3/4 in*) spacing TITAN SILENT 1000 mm (*40 in*) spacing

$L'_{nT,w}$ (C_l) = **45 (2) dB**

NIRS = 61

Testing laboratory: INGENIEURBÜRO ROTHBACHER GmbH. Test protocol: 17-466.

ON-SITE MEASUREMENT | CLT WALL 8 AIRBORNE SOUND INSULATION ACCORDING TO ISO 16283-1

WALL

Surface = 9,6 m² **Receiving room volume** = 67 m³

- 1 Resilient plasterboard connectors (s: 60 mm 2 3/8 in)
- 2 Plasterboard panel x2 (s: 25 mm 1 in)
- (3) Metal structure with plasterboard (s: 50 mm 2 in)
- 4 Low density mineral wool insulation (s: 50 mm 2 in)
- (5) CLT (s: 100 mm 4 in)
- (6) High density mineral wool insulation (s: 30 mm 1 3/16 in)
- (7) CLT (s: 100 mm 4 in)
- 8 Low density mineral wool insulation (s: 50 mm 2 in)
- (9) Metal structure with plasterboard (s: 50 mm 2 in)
- 10 Plasterboard panel x2 (s: 25 mm 1 in)
- (11) Resilient plasterboard connectors (s: 60 mm 2 3/8 in)

f

[Hz]

50

63

80

100

125

160

200

250

315

400

500

630

800

1000

1250

1600

2000

2500

3150

4000

5000

R

[dB]

6,9

22,7

36,6

41,9

45,2

44,0

52,1

55,0

61,5

66,3

69,3

72,5

74,4

76,4

78,1

≥ 82,6

≥ 84,9

≥ 83,0

≥ 77,6

≥ 83,6 ≥ 88,7

12 XYLOFON

(13) Fastening system:
 HBS 8 x 240 mm, 500 (20 in) mm spacing
 WBR 100, 1000 (40 in) mm spacing

ON-SITE MEASUREMENT | CLT WALL 8 AIRBORNE SOUND INSULATION ACCORDING TO ISO 16283-1

FLOOR SLAB

Surface = 9,6 m² **Receiving room volume** = 67 m³

- 1 Resilient plasterboard connectors (s: 60 mm 2 3/8 in)
- 2 Plasterboard panel x2 (s: 25 mm 1 in)
- (3) Metal structure with plasterboard (s: 50 mm 2 in)
- (4) Low density mineral wool insulation (s: 50 mm 2 in)
- (5) CLT (s: 100 mm 4 in)
- (6) High density mineral wool insulation (s: 30 mm 1 3/16 in)
- (7) CLT (s: 100 mm 4 in)
- 8 Low density mineral wool insulation (s: 50 mm 2 in)
- (9) Metal structure with plasterboard (s: 50 mm 2 in)
- (10) Plasterboard panel x2 (s: 25 mm 1 in)
- (11) Resilient plasterboard connectors (s: 60 mm 2 3/8 in)

12 XYLOFON

 (13) Fastening system: HBS 8 x 240 mm, 500 (20 in) mm spacing WBR 100, 1000 (40 in) mm spacing

ON-SITE MEASUREMENT | CLT FLOOR 8

AIRBORNE SOUND INSULATION ACCORDING TO ISO 16283-1

FLOOR SLAB

Surface = 26 m^2 **Receiving room volume** = 67 m³

(1) Floor (s: 15 mm - 9/16 in)

(2) Concrete screed (2400 kg/m³) (s: 65 mm - 2 9/16 in)

(3) BARRIER SD150

(4) Mineral wool insulation s' \leq 10 MN/m³ (110 kg/m³) (s: 30 mm - 1 3/16 in)

- (5) EPS insulation (s: 50 mm 2 in)
- 6 Gravel fill (s: 45 mm 1 3/4 in)
- (7) CLT (s: 160 mm 6 1/4 in)

(8) Resilient plasterboard connectors (s: 60 mm - 2 3/8 in)

(9) Metal structure with plasterboard (s: 50 mm - 2 in)

(10) Air chamber (s: 10 mm - 3/8 in)

- (11) Low density mineral wool insulation (s: 50 mm 2 in)
- (12) Plasterboard panel (s: 12,5 mm 1/2 in)

(13) XYLOFON

- (14) Fastening system:
 - HBS 8 x 240 mm, 500 mm (20 in) spacing WBR 100, 1000 (40 in) mm spacing

ON-SITE MEASUREMENT | CLT FLOOR 8 AIRBORNE SOUND INSULATION ACCORDING TO ISO 16283-1

(1)<u>(</u>3) 4,005,00000 (6) 14 75 8 11)//10/000

FLOOR SLAB

Surface = 26 m^2 **Receiving room volume** = 67 m³

(1) Floor (s: 15 mm - 9/16 in)

(2) Concrete screed (2400 kg/m³) (s: 65 mm - 2 9/16 in)

(3) BARRIER 100

(4) Mineral wool insulation s' \leq 10 MN/m³ (110 kg/m³) (s: 30 mm - 1 3/16 in)

(5) EPS insulation (s: 50 mm - 2 in)

(8) Resilient plasterboard connectors (s: 60 mm - 2 3/8 in)

(9) Metal structure with plasterboard (s: 50 mm - 2 in)

(10) Air chamber (s: 10 mm - 3/8 in)

- (11) Low density mineral wool insulation (s: 50 mm 2 in)
- (12) Plasterboard panel (s: 12,5 mm 1/2 in)

- (14) Fastening system:
 - HBS 8 x 240 mm, 500 mm (20 in) spacing WBR 100, 1000 (40 in) mm spacing

Responsible for measurements: University of Bologna. Test protocol: test 26/09/2017.

(6) Gravel fill (s: 45 mm - 1 3/4 in) (7) CLT (s: 160 mm - 6 1/4 in)

(13) XYLOFON

FLOOR SLAB

Surface = 26 m^2 Receiving room volume = 67 m^3

1 Floor (s: 15 mm - 9/16 in)

(2) Concrete screed (2400 kg/m³) (s: 65 mm - 2 9/16 in)

3 BARRIER 100

- (4) Mineral wool insulation s' \leq 10 MN/m³ (110 kg/m³) (s: 30 mm 1 3/16 in)
- (5) EPS insulation (s: 50 mm 2 in)
- 6 Gravel fill (s: 45 mm 1 3/4 in)
- ⑦ CLT (s: 160 mm 6 1/4 in)
- (8) Resilient plasterboard connectors (s: 60 mm 2 3/8 in)
- (9) Metal structure with plasterboard (s: 50 mm 2 in)
- (1) Air chamber (s: 10 mm *3/8 in*)
- (1) Low density mineral wool insulation (s: 50 mm 2 in)
- (12) Plasterboard panel (s: 12,5 mm 1/2 in)

13 XYLOFON

- (14) Fastening system:
 - HBS 8 x 240 mm, 500 mm (*20 in*) spacing WBR 100, 1000 (*40 in*) mm spacing

ON-SITE MEASUREMENT | CLT FLOOR 8

IMPACT SOUND INSULATION ACCORDING TO ISO 16283-2

IMPACT SOUND INSULATION

FLOOR SLAB

Surface = 26 m^2 **Receiving room volume** = 67 m³

(1) Floor (s: 15 mm - 9/16 in)

(2) Concrete screed (2400 kg/m³) (s: 65 mm - 2 9/16 in)

3 BARRIER 100

 $\overline{(4)}$ Mineral wool insulation s' \leq 10 MN/m³ (110 kg/m³) (s: 30 mm - 1 3/16 in)

(5) EPS insulation (s: 50 mm - 2 in)

- 6 Gravel fill (s: 45 mm 1 3/4 in)
- (7) CLT (s: 160 mm 6 1/4 in)

 $(\overline{8})$ Resilient plasterboard connectors (s: 60 mm - 2 3/8 in)

- (9) Metal structure with plasterboard (s: 50 mm 2 in)
- (10) Air chamber (s: 10 mm 3/8 in)

(11) Low density mineral wool insulation (s: 50 mm - 2 in)

(12) Plasterboard panel (s: 12,5 mm - 1/2 in)

(13) XYLOFON

(14) Fastening system:

HBS 8 x 240 mm, 500 mm (20 in) spacing WBR 100, 1000 (40 in) mm spacing

ACOUSTIC AND MECHANICAL INTERACTION

ACOUSTIC - MECHANICAL BEHAVIOR OF TITAN SILENT

The TITAN SILENT system has been tested in order to determine its mechanical and acoustic behaviour. The experimental campaigns carried out within the Seismic-Rev project and in collaboration with multiple research institutes, have shown how the characteristics of the resilient profile influence the mechanical performance of the connection. From an acoustic point of view, with the Flanksound project, it has been demonstrated that the ability to dampen vibrations through the joint is strongly influenced by the type and number of connections.

EXPERIMENTAL INVESTIGATION: MECHANICAL BEHAVIOUR

Within the Seismic-Rev project, in collaboration with the University of Trento and the Institute for BioEconomy (IBE - San Michele all'Adige), an investigation project was launched to evaluate the mechanical behaviour of TITAN angle brackets used in combination with different soundproofing profiles.

FIRST LABORATORY PHASE

Monotonic shear tests were carried out, in the first experimental phase, using linear loading procedures in displacement control, aimed at evaluating the variation in ultimate strength and stiffness offered by the TTF200 connection with LBA Ø4 x 60 mm nails.

Test samples: CLT panels TITAN TTF200 angle bracket

NUMERIC MODELLING

The results of the preliminary investigation campaign highlighted the importance of carrying out more accurate analyses of the influence of acoustic profiles on the mechanical behaviour of TTF200 and TTN240 metal angle brackets in terms of overall strength and stiffness. For this reason it was decided to carry out further evaluations by means of finite element numerical modelling, starting from the behaviour of the individual nail. In the case under study, the influence of three different resilient profiles were analyzed: XYLOFON 35 (6 mm), ALADIN STRIPE SOFT (5 mm) and ALADIN STRIPE EXTRA SOFT (7 mm).

Tx deformation [mm] for induced displacement 8 mm

SECOND LABORATORY PHASE

Laboratory tests were carried out at this phase in accordance with requirements of EN 26891. The TITAN SILENT mock-up, assembled with different TITAN angle brackets in combination with the resilient profile XYLOFON 35 (6 mm), have been brought to failure to investigate the maximum load, the load at 15 mm and the relative displacements, without load influence and therefore crushing effects on the acoustic profile (maximum gap between the plate and the timber panel).

Test samples: 5-layer CLT panels TITAN angle brackets with full fastening TTF200 - TTN240 - TTS240 - TTV240 XYLOFON 35 resilient profile

VARIATION OF MECHANICAL SHEAR STRENGTH AS A FUNCTION OF SOUNDPROOFING PROFILE

The comparison of the results between the different configurations analysed is reported in terms of load variation at 15 mm displacement ($F_{15 mm}$) and elastic stiffness at 5 mm ($K_{s,5 mm}$).

TITAN TTF200

confi	gurations	sp	$F_{15 mm}$	ΔF_{15mm}	K_{5mm}	${\bigtriangleup}K_{5mm}$
		[mm]	[kN]		[kN/mm]	
	TTF200	-	68,4	-	9,55	-
-	TTF200 + ALADIN STRIPE SOFT red.*	3	59,0	-14 %	8.58	-10 %
	TTF200 + ALADIN STRIPE EXTRA SOFT red.*	4	56,4	-18 %	8.25	-14 %
	TTF200 + ALADIN STRIPE SOFT	5	55,0	-20 %	7.98	-16 %
	TTF200 + XYLOFON PLATE	6	54,3	-21 %	7,79	-18 %
-	TTF200 + ALADIN STRIPE EXTRA SOFT	7	47,0	-31 %	7,30	-24 %
	TTF200 + XYLOFON PLATE - test 003	6	54,2	-21 %	5,49	-43 %

* Reduced thickness: reduced profile height due to the trapezoidal section and consequent crushing induced by the head of the nail during operation.

TITAN TTN240

confi	gurations	sp	$F_{15 mm}$	${\rm \Delta}F_{\rm 15mm}$	K_{5mm}	${\bigtriangleup}K_{5mm}$
		[mm]	[kN]		[kN/mm]	
-	TTN240	-	71,9	-	9,16	-
	TTN2400 + ALADIN STRIPE SOFT red.*	3	64,0	-11 %	8,40	-8 %
	TTN240 + ALADIN STRIPE EXTRA SOFT red.*	4	61,0	-15 %	8.17	-11 %
	TTN240 + ALADIN STRIPE SOFT	5	59,0	-18 %	8,00	-13 %
	TTN240 + XYLOFON PLATE	6	58,0	-19 %	7,81	-15 %
	TTN240 + ALADIN STRIPE EXTRA SOFT	7	53,5	-26 %	7.47	-18 %
	TTN240 + XYLOFON PLATE - test 001	6	61,5	-15%	6,19	-32%

* Reduced thickness: reduced profile height due to the trapezoidal section and consequent crushing induced by the head of the nail during operation.

EXPERIMENTAL RESULTS

The results obtained show a reduction in the strength and stiffness of the devices following the interposition of the soundproofing profiles. This variation is highly dependent on the thickness of the profile. In order to limit the reduction of strength it is necessary to adopt profiles with real thickness of approximately 6 mm or less.

SHEAR AND TENSILE STRENGTH OF NINO AND TITAN SILENT CERTIFIED IN ETA

Not only experimental tests, but also values certified by independent assessment bodies that certify the performance characteristics of non-standard construction products.

TITAN

The strength of TITAN coupled with XYLOFON PLATE below the horizontal flange was calculated from the load-carrying capacity of nails or screws according to "Blaß, H.J. und Laskewitz, B. (2000); Load-Carrying Capacity of Joints with Dowel-Type fasteners and Interlayers.", conservatively neglecting the profile stiffness.

Being an innovative angle bracket and one of the first certified on the market, a highly conservative approach was chosen and XYLOFON was simulated as an equivalent air layer. The angular capacity is therefore largely underestimated.

		F			
ANGLE BRACKET		ØxL	n _v	n _H	[▶] 2/3,Rk
	туре	[mm]	[pcs]	[pcs]	[kN]
TTN240 + XYLOFON PLATE	LBA nails	4 x 60	36	36	24,8
	LBS screws	5 x 50	36	36	22,8
TTS240 + XYLOFON PLATE	HBS PLATE screws	8 x 80	14	14	12,5
TTF200 + XYLOFON PLATE	LBA nails	4 x 60	30	30	17,2
	LBS screws	5 x 50	30	30	15,8

TIMBER-TO-TIMBER FASTENING PATTERN

36 LBA nails/LBS screws

36 LBA nails/LBS screws

TTF200

30 LBA nails/LBS screws

30 LBA nails/LBS screws

14 LBA nails/LBS screws

14 LBA nails/LBS screws

Discover the complete **TITAN** range on our website or request the catalogue from your salesman. **www.rothoblaas.com**

NINO

The strength of NINO coupled with XYLOFON PLATE was defined through a series of experimental tests carried out in collaboration with the Institute for BioEconomy (CNR-IBE in San Michele all'Adige). This made it possible to increase the technical know-how and refine the assessment method, thus obtaining resistances that take into account the real behaviour of the angle bracket.

	fastening					F	F
ANGLE BRACKET	turn e	ØxL	n _v	n _H	n VGS Ø9	Γ 1,Rk	۲2/3,Rk
	type	[mm]	[pcs]	[pcs]		[kN]	[kN]
	LBA nails	4 x 60	14	13	2	20	34,6
	LBS screws	5 x 50	14	13	2	20	16,9
	LBA nails	4 x 60	20	11	3	37,2	34,6
NINOIS080 + XTEOFON PLATE	LBS screws	5 x 50	20	11	3	37,2	25,5
	LBA nails	4 x 60	21	13	3	41,2	18,7
NINO100200 + ATLOFON PLATE	LBS screws	5 x 50	21	13	3	41,2	17,2

TIMBER-TO-TIMBER FASTENING PATTERN

NIN0100100

14 LBA nails/LBS screws

2 VGS screws Ø9

13 LBA nails/LBS screws

21 LBA nails/LBS screws

13 LBA nails/LBS screws

3 VGS screws Ø9

NIN015080

NIN0100200

20 LBA nails/LBS screws

3 VGS screws Ø9 11 LBA nails/LBS screws

Monotonic tensile test (F_1) on NINO15080 in timber-to-timber configuration.

Monotonic shear test ($\ensuremath{\mathsf{F}_{2/3}}\xspace)$ on NINO15080 in timber-to-timber configuration.

MECHANICAL INTERACTION AND FRICTION

For Rothoblaas, identifying the mechanical behaviour of solutions used in wood structures is a subject that doesn't allow for compromise. In this view, two research projects were developed in cooperation with two Austrian universities: Technische Universität Graz in Graz and Fakultät für Technische Wissenschaften in Innsbruck.

XYLOFON WOOD FRICTION

With the University of Graz, the goal was to characterise the static friction coefficient between wood and XYLOFON. In particular, XYLOFON profiles of various shores, combining different timber species. CLT elements (5 layers with 20 mm thick planks) made of spruce, classified as a soft wood, and of birch, from the semi-hardwood family, were used for the test setups. In addition to investigating the various wood types, an attempt was also made to understand how wood humidity influences the friction coefficient.

Below are some example values obtained from the tests performed on XYLOFON 70. An additional variable was then considered, representing the vertical load acting upon the acoustic profiles, reproduced in the test through a pre-load induced on the CLT panel system being evaluated.

For each configuration, graphs demonstrating the movement/friction coefficient μ were plotted, to understand to what degree it is useful to consider the contribution of friction for static purposes.

MECHANICAL INTERACTION XYLOFON AND HBS PARTIAL THREAD SCREWS

Having investigated the influence of the resilient profile on the mechanical strengths of the shear angle brackets (TITAN), the behaviour of partially threaded screws was investigated in the same context.

The test completes the investigation into the characterisation of acoustic behaviour under static and/or mechanical stress.

The image below shows the test set-up used for the research. It was decided to investigate various XYLOFON shores, also in order to understand how much the hardness of the material affects the variation in the resistance and stiffness to shearing of the connection with partial thread screws.

Through experimental testing and analytical approaches, the mechanical and deformation performance of connections between CLT panels — made with 8x280 HBS screws installed with/without XYLO-FON WASHER separating washers — was analysed with and without the use of resilient, intermediate XYLOFON35 decoupling profiles.

- The full scientific report on the experimental testing is available at Rothoblaas.
- Experimental testing conducted in collaboration with Technische Versuchs und Forschungsanstalt (TVFA), Innsbruck.

INFLUENCE OF MECHANICAL FASTENING USING STAPLES

This test had the aim of determining the influence of the staples used to fasten the XYLOFON product onto CLT panels during construction.

Tests were carried out by the University of Bologna - Industrial Engineering Department, completing the tests begun during the first edition of the Flanksound Project.

TEST SETUP

The measurement system consisted of a horizontal CLT panel to which two vertical panels were applied, as in the diagram (figure 1). Each panel was connected with 6 vertical HBS 8 x 240 screws and 2 TITAN SILENT TTF220 angle brackets with LBS 5 x 50 screws per side (figure 2).

A strip of XYLOFON 35 resilient material was applied on the contact surface of both panels.

On the left panel, the XYLOFON was fastened with staples applied in pairs stepped 20 cm, while they were not used on the panel on the right.

CONSIDERATIONS

Given the smaller size of the panels, it was decided to use Dv,ij,n as the index, given that only geometric dimensions are used to average out the difference in vibration speed levels.

Precisely due to the small size, use of ${\rm K}_{\rm ij}$ as the comparison parameter is not recommended, given the effect of internal resonance between the panels.

The values were averaged between 125 and 1000 Hz.

It is also worth remembering that the uncertainty associated with the testing method used is ± 2 dB, as indicated in ISO/FDIS 12354-1:2017.

The results show that the use of staples for prefixing the resilient strip **does not result in a substantial difference** between the D_{v,ij,n} values for the same panel fixing systems. $D_{v,ij,n} (125-1000Hz) = 7,8 dB$ panel with staples

D_{v,ij,n} (125-1000Hz) = **8,5 dB** panel without staples

FIRE SAFETY IN MULTI-STOREY BUILDINGS

Rothoblaas participated in the research project "Fire Safe implementation of visible mass timber in tall buildings - compartment fire testing" coordinated by Research Institutes of Sweden (RISE).

The project aims to perform a series of tests on CLT compartments in order to define the fire performance of timber structures and, if necessary, identify additional measures to ensure fire safety.

The objectives also included the definition of protection criteria for multi-storey buildings and the verification of timber joints directly exposed to fire.

TEST SETUP

For this study, five tests were performed on compartments with internal dimensions 23.0 x 22.5 x 9.0 ft (7,0 x 6,85 x 2,73 m).

Four of these compartments (test (1), (2), (3) and (5)) had two ventilation openings of 7.4 x 5.8 ft (2,25 x 1,78 m) resulting in an opening factor of 0.112 ft^{1/2} (0,062 m^{1/2}).

The remaining test (4) test) had six larger openings, resulting in an opening factor of 0.453 ft^{$\frac{1}{2}$} (0.25 m^{$\frac{1}{2}$}), which is approximately the average of office compartment opening factors. The matrix of the tests performed is shown on the following page.

Photo of the compartment at the end of assembly, before starting the test

Photo of the compartment after switching on

Photo of the compartment during the test

The tests were stopped after 4 hours and the test is considered passed if the following requirements are fulfilled:

after 4 hours temperatures are below 300°C

no secondary flashover after 3 hours

D. Brandon, J. Sjöström, A. Temple, E. Hallberg, F. Kahl, **"Fire Safe implementation of visible mass timber in tall buildings – compartment fire testing**", RISE Report 2021:40

MATRIX OF THE TESTS PERFORMED

TEST 1 - configuration

Exposed surface	
ceiling	100%
beam	100%
left wall	0%
right wall	0%
front wall	0%
column	0%

TEST 2 - configuration

Exposed surface

ceiling	100%
beam	100%
left wall	100%
right wall	100%
front wall	0%
column	0%

TEST 3 - configuration

Exposed surface

ceiling	100%
beam	100%
left wall	100%
right wall	78%
front wall	100%
column	100%

TEST 4 - configuration

Exposed surface	
ceiling	100%
beam	100%
left wall	100%
right wall	100%
front wall	100%
column	100%

TEST 5 - configuration

Exposed surface

ceiling	100%
beam	100%
left wall	100%
right wall	100%
front wall	60%
column	100%

JOINTS AND INTERFACES

Various Rothoblaas sealants were used for the test, some of which were developed to improve air-tightness and/or acoustic performance. The test results show that these products are suitable for preventing the spread of fire through joints.

BAND

BAND

resilient profile

XYLOFON

XYLOFON AND FIRE

Over the last few years, an architectural need to keep CLT visible for aesthetic reasons has developed. In this case, the XYLOFON product should be placed slightly set back from the wood surface, creating a shadow effect. In this configuration, XYLOFON contributes to the structure's fire resistance.

To test this feature, tests were performed to characterise its airtightness and fire insulation behaviour (EI) at ETH Zürich and the Institute of Structural Engineering (IBK) & Swiss Timber Solutions AG.

TEST SETUP

It was decided to test both XYLOFON on its own and the product with two different flame retardant sealants. The sample was prepared by dividing a laminated panel into 4 pieces, so as to create 3 openings to accommodate the 3 different configurations:

XYLOFON XYLOFON + SEALANT 1 XYLOFON + FIRE SEALING SILICONE

During assembly, thermocouples were inserted to record the change in temperatures at various depths of the sample during the fire phase. Once the fire was started, the data was registered and the trend in the thermal change was tracked on a temperature/time graph, which was also compared to the standardised EN ISO curve. The graph at the right shows the temperatures recorded on the PT1, PT2, PT3, PT4 and PT5 thermocouples.

CONSIDERATIONS

The test was stopped after 60 minutes of exposure to fire, based on the EN ISO standard.

For all configurations tested, the temperature of the surface not exposed to fire remained approximately at room temperature, not showing any colour alteration.

The opening which contained solely 100 mm XYLOFON, as predicted, showed the greatest loss of thickness due to carbonisation. The junctions with 20 mm of sealant 1 and FIRE SEALING SILICONE, together with the 100 mm XYLOFON strip showed similar temperature gradients.

The presence of XYLOFON does not affect the fire behaviour of the joint.

It can be stated that the solution with 100 mm wide **XYLOFON** can achieve **EI 60** without the need for additional flame retardant protection

REAL JOINTS

Solutions for Building Technology

CONTENTS

PRODUCT CHOICE AND DETERMINATION OF K _{ij} 106
EUROPEAN TECHNICAL ASSESSMENT (ETA)
THE CEN MODEL (EN ISO 12354)
DETERMINING THE VIBRATION REDUCTION INDEX K _{ij} IN TIMBER STRUCTURES
THE SIMPLIFIED METHOD
T-JOINT PERIMETER WALLS
T-JOINT PERIMETER WALLS
SOLUTIONS FOR LIGHTWEIGHT FLOORS
LABORATORY MEASUREMENT DRY FLOOR SLAB_1

CONTENTS | **PIANO** | 101

PIANO RESILIENT SOUNDPROOFING PROFILE

CODES AND DIMENSIONS

CODE	В	L	S	pcs
	[mm]	[m]	[mm]	
PIANOA4040	80	10	6	1
PIANOA5050	100	10	6	1
PIANOA6060	120	10	6	1
PIANOA140	140	10	6	1
PIANOB4040	80	10	6	1
PIANOB5050	100	10	6	1
PIANOB6060	120	10	6	1
PIANOB140	140	10	6	1
PIANOC080	80	10	6	1
PIANOC100	100	10	6	1
PIANOC120	120	10	6	1
PIANOC140	140	10	6	1
PIANOD080	80	10	6	1
PIANOD100	100	10	6	1
PIANOD120	120	10	6	1
PIANOD140	140	10	6	1
PIANOE080	80	10	6	1
PIANOE100	100	10	6	1
PIANOE120	120	10	6	1
PIANOE140	140	10	6	1

Mechanical performance and elastic behaviour tested according to ETA

- 1		
		elastic response of the profile applied in buildings
		alastic response of the profile as vibration damping

elastic response of the profile as vibration damping

Anti-vibration

 PIANO dampens vibrations in both static and dynamic conditions due to its ability to absorb and dissipate the energy of the system. application with static loads (e.g. buildings) application with dynamic loads (e.g. machines, bridges) 	page 12

к_{ij} values entered in ETA

 K_{ij} tested for all hardness values and with appropriate fastening system

page 36

page 10

Lightweight floors

 $\Delta_{l,ij} > 4 dB$

PIANO A was tested in combination with the ribbing strips of the lightweight floors. Measured improvement **7 dB**.

PRODUCT COMPARISON

	products	thickness	acoustic improvement $\boldsymbol{\Delta}_{l,ij}^{(1)}$	elastic modulus in compression E _c
PIAND A		<mark>6</mark> mm	> 4 dB	0,23 N/mm²
PIANO B		<mark>6</mark> mm	<mark>≻4</mark> dB	1,08 N/mm²
PIANO C		<mark>6</mark> mm	> 4 dB	7,92 N/mm²
PIANO D		<mark>6</mark> mm	> 4 dB	22,1 N/mm²
PIANO E		<mark>6</mark> mm	<mark>≻4</mark> dB	24,76 N/mm²

LEGEND:

load for acoustic optimisation

compression at 3 mm deformation (ultimate limit state)

dynamic elastic modulus E' _{5Hz} - E' _{50Hz}	damping factor tanδ _{5Hz} - tanδ _{50Hz}	acoustic load / maximum applied load ⁽²⁾
0,5 N/mm ² - 0,5 N/mm ²	0,186 - 0,238	0 5 10 15 20 25 30 35 acoustic load [N/mm ²] 0,008 0,052 maximum applied load [N/mm ²] 0,008 0,15
1,75 N/mm ² - 2,07 N/mm ²	0,308 - 0,372	acoustic load [N/mm ²] 0,04 0,286 maximum applied load [N/mm ²] 0,04 0,85
9,35 N/mm² - 11,61 N/mm²	0,272 - 0,306	acoustic load [N/mm ²] 0,26 1,4 maximum applied load [N/mm ²] 0,26 12,07
20,3 N/mm² - 25,81 N/mm²	0,297 - 0,349	acoustic load [N/mm ²] 1,2 2,28 maximum applied load [N/mm ²] 1,2 1 5,9
54,8 N/mm² - 67,08 N/mm²	0,243 - 0,253	acoustic load [N/mm ²] 1,8 3,2 maximum applied load [N/mm ²] 1,8 17,07

⁽¹⁾ $\Delta_{l,ij} = K_{ij,with} - K_{ij,without}$. (2)The reported load ranges here are optimised with respect to the acoustic and static behaviour of the material in compression.

PRODUCT CHOICE AND DETERMINATION OF K_{IJ}

DESIGNING THE CORRECT PROFILE ACCORDING TO THE LOAD

Resilient profiles must be correctly loaded in order to isolate the low to medium frequencies of structurally transmitted vibrations: guidance on how to proceed with the evaluation of the product are given below. It is advisable to add the permanent load value at 50% of the characteristic value of the accidental load.

It is necessary to focus on the operating conditions and not the ultimate limit state conditions. This is because the goal is to insulate the building from noise during normal operating conditions and not during design limit states.

PRODUCT SELECTION

The product can also be selected using the application tables (see for example the following table for PIANO).

TABLE OF USE®

CODE	B	load for acoustic optimisation ⁽²⁾ [kN/m] (101/11)		compression for acoustic optimisation ⁽²⁾ [N/mm ²] (csi)		reduction [mm] [mil]		compressive stress at 3 mm (ultimate limit state)		
	[mm]	m	in'	n	tax.	min	max	min	max	(M/mmys) (paul
PIANOA4040	80	0,64	472	4,16	3068	0.008 1.2	0,052 75	0.2 8	1,35 53	0,15 22
	40 (divided)	0,32	236	2,08	1534					
-	100	0,8	590	5.2	3835					
PIANOA5050	50 (divided)	0,4	295	2.6	1918					
PIANOA6060	120	0,96	708	6,24	4602					
	60 (divided)	0,48	354	3,12	2301					
PIANOA140	140	1,12	826	7,28	5369					

Note: The static behaviour of the material in compression is evaluated, considering that the deformations due to the loads are static. This is because a building is not affected by significant movement phenomena, nor dynamic deformation.

Rothoblaas has chosen to define a load range that allows good acoustic performance and avoids excessive deformation and differential movements in the materials, including the building's final architectural finishes. It is possible to use profiles with loads outside the indicated range if the resonance frequency of the system and the deformation of the profile at the ultimate limit state are assessed.

DETERMINATION OF PERFORMANCE

Once the loads have been identified, it is necessary to determine the design frequency - that is the stimulating frequency for the element from which the structure needs to be isolated. Below is an example, to make the explanation easier and simple to understand.

Suppose there is a load of 0,025 N/mm² acting on the profile. In this case, we used the PIANO A product, because the load is not particularly high. Reading the graph, it can be seen that the profile has a resonance frequency of around 19 Hz. natural frequency [Hz]

At this point, the degree of transmission for the product under these load conditions can be calculated, referring to the design frequency of 100 Hz.

transmission = $f/f_0 = 5,26$

Then the transmission graph is used, placing the value 5,26 obtained on the x-axis and intersecting the degree of the transmission curve. It follows that the transmission of the material is negative i.e. that the material is able to insulate around -13 dB.

TRANSMISSION IS POSITIVE WHEN THE MATERIAL TRANSMITS AND IS NEGATIVE WHEN THE PROFILE BEGINS TO INSULATE. This means this figure shows that the product, loaded in this way, insulates 13 dB at a reference frequency of 100 Hz.

The same thing can be done using the attenuation graph. The percentage of vibration attenuated at the initial design frequency is obtained. The attenuation is also calculated with the load conditions referring to the design frequency of 100 Hz.

attenuation =
$$f/f_0 = 5,26$$

The graph is used by placing the calculated value of 5,26 on the x-axis and intersecting the attenuation curve.

It follows that the material's attenuation is optimal, i.e., the material can isolate more than 95 % of the transmission.

Essentially, the same result is obtained with two different inputs, but when deformation is set, the starting point is the mechanical performance, not the acoustic one.

In the light of this fact, Rothoblaas always recommends starting with the design frequency and the loads to optimise the material based on the real conditions.

EUROPEAN TECHNICAL ASSESSMENT (ETA)

The European Technical Assessment (ETA) provides an **independent procedure at European level** for assessing the essential performance characteristics of non-standard construction products.

OBJECTIVITY AND INDEPENDENCE

Only independent Technical Assessment Bodies (TAB) can issue ETAs. Third-party evaluation enhances the credibility of product performance information, improves **market transparency**, and ensures that the stated values are tested to **precise standards** appropriate for the intended use of the product.

TRANSPARENCY

ETAs provide **reliable product performance information** that can be compared across Europe on the basis of harmonised technical specifications, the European Assessment Documents (EADs). ETAs have made construction products **comparable throughout the European Economic Area** through the provision of detailed product performance information.

PARAMETERS TESTED ACCORDING TO ETA

STATIC AND DYNAMIC MODULUS OF ELASTICITY

Many products on the market have been tested to determine the dynamic elastic modulus and damping factor in order to provide transmissibility graphs according to the natural frequency of the resilient profile.

Since there is no common standard, each manufacturer follows a different procedure, and often the standard used and the test setup are not stated.

Considering the intended use of **PIANO**, the dynamic elastic modulus and damping factor must be determined in compression (there would be no point in defining them according to other deformation methods).

Dynamic elastic modulus and damping factor are measured under dynamic conditions and are relevant for vibration reduction in service equipment or other vibration sources.

In buildings, **PIANO** is subject to static and quasi-static loading, so the dynamic elastic modulus is not as representative of the product's actual behaviour.

Tests show that profile friction could affect the elastic modulus value, and that is why it is necessary to always perform measurements with and without a lubricant to have a value that is independent of boundary conditions (without friction) and a value that is representative of the in situ operating conditions (with friction).

VIBRATION REDUCTION INDEX - K

Due to the lack of a common standard, each manufacturer provides K_{ij} values tested in a different configuration (type of joint, number of fastening systems, etc.). Clarifying the test setup and boundary conditions being used is important because the result is strongly influenced by the many variables that define the joint.

In the European Technical Assessment, the results are expressed clearly to avoid ambiguity in the configuration.

STRESS AND DEFORMATION IN COMPRESSION

From a static point of view, it is important to provide the **compressive stress** according to the deformation (e.g., 1 mm, 2 mm and 3 mm compression) so as to limit the maximum deformation and possible structural failure.

Resilient profiles are subjected to constant loading during their working life, so it is important to estimate the **long-term behaviour** for both static reasons (to avoid differential failure in the structure) and acoustic reasons (a flattened resilient strip does not have the same elastic response and consequently the acoustic performance declines).

For the same reason, it is important to assess the **final thickness of the product** after compression for a given time and after a recovery period.

Rothoblaas has invested in the development of solutions that follow a multidisciplinary approach and take into account the real conditions of the construction site. Laboratory measurements, static tests and moisture control checks allow the designer to benefit from real performance data and not just theoretical values that have limited practical applications.

PIANO A

TABLE OF USE^[1]

CODE	В	load for acoustic optimisation ⁽²⁾ [kN/m]		compression for acoustic optimisation ⁽²⁾ [N/mm ²]		deformation [mm]		compression at 3 mm deformation (ultimate limit state)
	[mm]	from	to	from	to	from	to	[N/mm ²]
	80	0,64	4,16					
PIANOA4040	40 (divided)	0,32	2,08					0,15
DIANOAEOEO	100	0,8	5,2					
PIANOA5050	50 (divided)	0,4	2,6	0,008	0,052	0,2	1,35	
DIANOACOCO	120	0,96	6,24					
PIANOA6060	60 (divided)	0,48	3,12					
PIANOA140	140	1,12	7,28					

(1) The reported load ranges here are optimised with respect to the acoustic and static behaviour of the material in compression. It is possible to use profiles with loads outside the indicated range if the resonance frequency of the system and the deformation of the profile at the ultimate limit state are assessed.

⁽²⁾Resilient profiles must be properly loaded in order to isolate medium/low frequency vibrations transmitted structurally. It is advisable to assess the load according to the operating conditions because the building must be acoustically insulated under everyday load conditions (add the value of the permanent load to 50 per cent of the characteristic value of the incidental load $\Omega_{\text{linear}} = q_{\text{gk}} + 0.5 q_{\text{vk}}$).

TECHNICAL DATA

Properties	standard	value
Acoustic improvement $\Delta_{l,ij}^{(3)}$	ISO 10848	> 4 dB
Elastic modulus in compression E_c (without friction $E_c,lubricant$)	ISO 844	0,23 MPa (0,19 MPa)
Dynamic elastic modulus E′ _{1Hz - E″1Hz}	ISO 4664-1	0,4 - 0.07 MPa
Dynamic elastic modulus E' _{5Hz - E''5Hz}	ISO 4664-1	0,50 - 0.08 MPa
Dynamic elastic modulus E' _{10Hz - E} ''10Hz	ISO 4664-1	0,5 - 0.09 MPa
Dynamic elastic modulus E' _{50Hz} - E''50Hz	ISO 4664-1	0,5 - 0.13 MPa
Damping factor tan δ_{1Hz}	ISO 4664-1	0,177
Damping factor tan $\delta_{5\text{Hz}}$	ISO 4664-1	0,186
Damping factor tan $\delta_{10\text{Hz}}$	ISO 4664-1	0,192
Damping factor tan δ_{50Hz}	ISO 4664-1	0,238
Creep $\Delta \epsilon / \epsilon_1$	ISO 8013/ ISO 16534	0,24
Compression set c.s.	ISO 1856	26,4%
Compression at 1 mm deformation σ_{1mm}	ISO 844	0,04 N/mm ²
Compressive stress at 2 mm strain σ_{2mm}	ISO 844	0,08 N/mm ²
Compressive stress at 3 mm strain σ_{3mm}	ISO 844	0,15 N/mm ²
Reaction to fire	EN 13501-1	class E
Water absorption after 48h	ISO 62	4,25%
$^{(3)}\Delta_{l,ij} = \kappa_{ij,with} - \kappa_{ij,without}$		

PERFORMANCE

Acoustic improvement tested:

Maximum applicable load (deformation 3 mm):

0,15 N/mm²

Acoustic service load:

from 0,008 to 0,052 N/ mm²

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

DEFORMATION AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

Normalised with respect to the resonance frequency with f = 6 Hz.

DEFORMATION AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

DEFORMATION AND LOAD

PIANO B

TABLE OF USE^[1]

CODE	В	load for acoustic optimisation ⁽²⁾ [kN/m]		compression for acoustic optimisation ⁽²⁾ [N/mm ²]		deformation [mm]		compression at 3 mm deformation (ultimate limit state)
	[mm]	from	to	from	to	from	to	[N/mm ²]
	80	3,2	21,6					
PIANOB4040	40 (divided)	1,6	10,8				0,2 1,49	0,85
	100	4	27					
PIANOBS050	50 (divided)	2	13,5	0,04	0,27	0,2		
DIANODCOCO	120	4,8	32,4					
PIANOB6060	60 (divided)	2,4	16,2					
PIANOA140	140	5,6	37,8	-				

(1) The reported load ranges here are optimised with respect to the acoustic and static behaviour of the material in compression. It is possible to use profiles with loads outside the indicated range if the resonance frequency of the system and the deformation of the profile at the ultimate limit state are assessed.

⁽²⁾Resilient profiles must be properly loaded in order to isolate medium/low frequency vibrations transmitted structurally. It is advisable to assess the load according to the operating conditions because the building must be acoustically insulated under everyday load conditions (add the value of the permanent load to 50 per cent of the characteristic value of the incidental load $Q_{linear} = q_{gk} + 0.5 q_{vk}$).

TECHNICAL DATA

Properties	standard	value
Acoustic improvement $\Delta_{l,ij}^{(3)}$	ISO 10848	> 4 dB
Elastic modulus in compression E_c (without friction $E_c,lubricant$)	ISO 844	1,08 MPa (1,08 MPa)
Dynamic elastic modulus E' _{1Hz - E''1Hz}	ISO 4664-1	1,54 - 0.42 MPa
Dynamic elastic modulus E' _{5Hz - E''5Hz}	ISO 4664-1	1,75 - 0.55 MPa
Dynamic elastic modulus E' _{10Hz -E} "10Hz	ISO 4664-1	1,87 - 0.59 MPa
Dynamic elastic modulus E' _{50Hz -E''50Hz}	ISO 4664-1	2,07 - 0.79 MPa
Damping factor tan $\delta_{1\text{Hz}}$	ISO 4664-1	0,270
Damping factor tan δ_{5Hz}	ISO 4664-1	0,308
Damping factor tan δ_{10Hz}	ISO 4664-1	0,314
Damping factor tan δ_{50Hz}	ISO 4664-1	0,372
Creep $\Delta \epsilon / \epsilon_1$	ISO 8013/ ISO 16534	0,34
Compression set c.s.	ISO 1856	37,5%
Compression at 1 mm deformation $\sigma_{1\text{mm}}$	ISO 844	0,14 N/mm ²
Compressive stress at 2 mm strain σ_{2mm}	ISO 844	0,31 N/mm ²
Compressive stress at 3 mm strain σ_{3mm}	ISO 844	0,85 N/mm ²
Reaction to fire	EN 13501-1	class E
Water absorption after 48h	ISO 62	1,50%
$(5) \Delta_{\text{Lii}} = K_{\text{II,with}} - K_{\text{II,without}}$		

PERFORMANCE

Acoustic improvement tested:

$$\Delta_{l,ij}^{(3)} : > 4 \, dB$$

Maximum applicable load (deformation 3 mm):

0,85 N/mm²

Acoustic service load:

from 0,04 to 0,27 N/mm²

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

DEFORMATION AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

Normalised with respect to the resonance frequency with f = 6 Hz.

DEFORMATION AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

DEFORMATION AND LOAD

PIANO C

TABLE OF USE^[1]

CODE	В	load for a optimis	acoustic ation ⁽²⁾ /m]	compression optimis [N/m	for acoustic ation ⁽²⁾ Im ²]	deforn [mi	nation m]	compression at 3 mm deformation (ultimate limit state)
	[mm]	from	to	from	to	from	to	[N/mm ²]
PIANOC080	80	9,6	112					
PIANOC100	100	12	140	0.10	1.4	0,12	0,63	9,23
PIANOC120	120	14,4	168	0,12	1,4			
PIANOC140	140	16,8	196					

⁽¹⁾The reported load ranges here are optimised with respect to the acoustic and static behaviour of the material in compression. It is possible to use profiles with loads outside the indicated range if the resonance frequency of the system and the deformation of the profile at the ultimate limit state are assessed.

⁽²⁾Resilient profiles must be properly loaded in order to isolate medium/low frequency vibrations transmitted structurally. It is advisable to assess the load according to the operating conditions because the building must be acoustically insulated under everyday load conditions (add the value of the permanent load to 50 per cent of the characteristic value of the incidental load $Q_{\text{linear}} = q_{\text{gk}} + 0.5 q_{\text{vk}}$).

TECHNICAL DATA

Properties	standard	value
Acoustic improvement $\Delta_{l,ij}^{(3)}$	ISO 10848	> 4 dB
Elastic modulus in compression E_c (without friction $E_c,lubricant$)	ISO 844	7,92 MPa (3,67 MPa)
Dynamic elastic modulus E′ _{1Hz - E″1Hz}	ISO 4664-1	8,35 - 2.15 MPa
Dynamic elastic modulus E' _{5Hz - E''5Hz}	ISO 4664-1	9,35 - 2.55 MPa
Dynamic elastic modulus E′ _{10Hz -E″10Hz}	ISO 4664-1	9,91 - 2.81 MPa
Dynamic elastic modulus E' _{50Hz -E'50Hz}	ISO 4664-1	11,61 - 3.56 MPa
Damping factor tan δ_{1Hz}	ISO 4664-1	0,258
Damping factor tan δ_{5Hz}	ISO 4664-1	0,272
Damping factor tan δ_{10Hz}	ISO 4664-1	0,283
Damping factor tan δ_{50Hz}	ISO 4664-1	0,306
Creep Δε/ε ₁	ISO 8013/ ISO 16534	0,18
Compression set c.s.	ISO 1856	11,95%
Compression at 1 mm deformation $\sigma_{1\text{mm}}$	ISO 844	1,50 N/mm ²
Compressive stress at 2 mm strain σ_{2mm}	ISO 844	3,55 N/mm ²
Compressive stress at 3 mm strain σ_{3mm}	ISO 844	9,23 N/mm ²
Reaction to fire	EN 13501-1	class E
Water absorption after 48h	ISO 62	< 1 %
$^{(5)}\Delta_{\text{Lij}} = K_{\text{ij,with}} - K_{\text{ij,without}}$		

PERFORMANCE

Acoustic improvement tested:

Maximum applicable load (deformation 3 mm):

12,07 N/mm²

Acoustic service load:

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

DEFORMATION AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

Normalised with respect to the resonance frequency with f = 6 Hz.

DEFORMATION AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

DEFORMATION AND LOAD

PIANO D

TABLE OF USE^[1]

CODE	В	load for optimis [kN	acoustic sation ⁽²⁾ /m]	compression optimis [N/m	for acoustic ation ⁽²⁾ nm ²]	deforn [mi	nation m]	compression at 3 mm deformation (ultimate limit state)
	[mm]	from	to	from	to	from	to	[N/mm ²]
PIANOD080	80	96	182,4				0,62	16,9
PIANOD100	100	120	228	1.2	2.20	0,33		
PIANOD120	120	144	273,6	1,2	2,28			
PIANOD140	140	168	319,2					

⁽¹⁾The reported load ranges here are optimised with respect to the acoustic and static behaviour of the material in compression. It is possible to use profiles with loads outside the indicated range if the resonance frequency of the system and the deformation of the profile at the ultimate limit state are assessed.

⁽²⁾Resilient profiles must be properly loaded in order to isolate medium/low frequency vibrations transmitted structurally. It is advisable to assess the load according to the operating conditions because the building must be acoustically insulated under everyday load conditions (add the value of the permanent load to 50 per cent of the characteristic value of the incidental load $Q_{\text{linear}} = q_{\text{gk}} + 0.5 q_{\text{vk}}$).

TECHNICAL DATA

Properties	standard	value
Acoustic improvement $\Delta_{l,ij}^{(3)}$	ISO 10848	> 4 dB
Elastic modulus in compression E_c (without friction $E_{c,lubricant}$)	ISO 844	22,10 MPa (7,92 MPa)
Dynamic elastic modulus E' _{1Hz - E''1Hz}	ISO 4664-1	18,23 - 4.97 MPa
Dynamic elastic modulus E' _{5Hz - E''5Hz}	ISO 4664-1	20,30 - 6.03 MPa
Dynamic elastic modulus E' _{10Hz} - E''10Hz	ISO 4664-1	21,62 - 6.71 MPa
Dynamic elastic modulus E' _{50Hz - E''50Hz}	ISO 4664-1	25,81 - 9.01 MPa
Damping factor tan δ_{1Hz}	ISO 4664-1	0,273
Damping factor tan δ_{5Hz}	ISO 4664-1	0,297
Damping factor tan δ_{10Hz}	ISO 4664-1	0,31
Damping factor tan δ_{50Hz}	ISO 4664-1	0,349
Creep $\Delta\epsilon/\epsilon_1$	ISO 8013/ ISO 16534	0,45
Compression set c.s.	ISO 1856	14,75%
Compression at 1 mm deformation σ_{1mm}	ISO 844	4,40 N/mm ²
Compressive stress at 2 mm strain σ_{2mm}	ISO 844	10,49 N/mm ²
Compressive stress at 3 mm strain σ_{3mm}	ISO 844	16,9 N/mm ²
Reaction to fire	EN 13501-1	class E
Water absorption after 48h	ISO 62	< 1 %
⁽³⁾ $\Delta_{l,ij} = K_{ij,with} - K_{ij,without}$		

PERFORMANCE

Acoustic improvement tested:

$$\Delta_{l,ij}^{(3)} : > 4 \, dB$$

Maximum applicable load (deformation 3 mm):

16,9 N/mm²

Acoustic service load:

from 1,2 to 2,28 N/mm²

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

DEFORMATION AND LOAD

f / f₀

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

Normalised with respect to the resonance frequency with f = 6 Hz.

DEFORMATION AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

DEFORMATION AND LOAD

PIANO E

TABLE OF USE^[1]

CODE	В	load for a optimis	acoustic ation ⁽²⁾ /m]	compression optimis [N/m	for acoustic ation ⁽²⁾ Im ²]	deforn [m	nation m]	compression at 3 mm deformation (ultimate limit state)
	[mm]	from	to	from	to	from	to	[N/mm ²]
PIANOE080	80	144	256			0,44	0,77	17,07
PIANOE100	100	180	320	1.0	7.0			
PIANOE120	120	216	384	1,8	3,2			
PIANOE140	140	252	448					

⁽¹⁾The reported load ranges here are optimised with respect to the acoustic and static behaviour of the material in compression. It is possible to use profiles with loads outside the indicated range if the resonance frequency of the system and the deformation of the profile at the ultimate limit state are assessed.

⁽²⁾Resilient profiles must be properly loaded in order to isolate medium/low frequency vibrations transmitted structurally. It is advisable to assess the load according to the operating conditions because the building must be acoustically insulated under everyday load conditions (add the value of the permanent load to 50 per cent of the characteristic value of the incidental load $Q_{\text{linear}} = q_{\text{gk}} + 0.5 q_{\text{vk}}$).

TECHNICAL DATA

Properties	standard	value
Acoustic improvement $\Delta_{l,ij}^{(3)}$	ISO 10848	> 4 dB
Elastic modulus in compression E_c (without friction $E_c,lubricant$)	ISO 844	24,76 MPa (12,03 MPa)
Dynamic elastic modulus E' _{1Hz - E''1Hz}	ISO 4664-1	48,83 - 11.99 MPa
Dynamic elastic modulus E' _{5Hz - E''5Hz}	ISO 4664-1	54,80 - 13.24 MPa
Dynamic elastic modulus E′ _{10Hz} - E″10Hz	ISO 4664-1	58,35 - 14.04 MPa
Dynamic elastic modulus E' _{50Hz - E''50Hz}	ISO 4664-1	67,08 - 16.85 MPa
Damping factor tan δ_{1Hz}	ISO 4664-1	0,247
Damping factor tan δ_{5Hz}	ISO 4664-1	0,243
Damping factor tan $\delta_{10\text{Hz}}$	ISO 4664-1	0,242
Damping factor tan $\delta_{50\text{Hz}}$	ISO 4664-1	0,253
Creep Δε/ε ₁	ISO 8013/ ISO 16534	0,24
Compression set c.s.	ISO 1856	42,08%
Compression at 1 mm deformation $\sigma_{1\text{mm}}$	ISO 844	3,81 N/mm ²
Compressive stress at 2 mm strain σ_{2mm}	ISO 844	8,36 N/mm ²
Compressive stress at 3 mm strain σ_{3mm}	ISO 844	17,07 N/mm ²
Reaction to fire	EN 13501-1	class E
Water absorption after 48h	ISO 62	< 1 %
$\Delta_{l,ij} = K_{ij,with} - K_{ij,without}$		

PERFORMANCE

Acoustic improvement tested:

$$\Delta_{l,ij}^{(3)} : > 4 dB$$

Maximum applicable load (deformation 3 mm):

17,07 N/mm²

Acoustic service load:

from 1,8 to 3,2 N/mm²

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

DEFORMATION AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

Normalised with respect to the resonance frequency with f = 6 Hz.

DEFORMATION AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

DEFORMATION AND LOAD

THE CEN MODEL (EN ISO 12354)

The CEN model proposed in the EN ISO 12354 series of standards provides a powerful tool to predict the acoustic performance of a partition from the characteristics of the construction elements. The EN ISO 12354 series has been expanded to provide more specific information regarding timber frame and CLT structures.

EN ISO 12354-1:2017 Airborne sound insulation between rooms.

EN ISO 12354-2:2017 Impact sound soundproofing between rooms.

APPARENT SOUND REDUCTION INDEX

EN ISO 12354 norms provide two methods to calculate the acoustic performance of a partition: a detailed method and the simplified method. When using the simplified calculation model, disregarding the presence of small penetrations and airborne transmission paths $D_{n,j,w}$ the apparent sound reduction index R'_w can be calculated as the logarithmic sum of the direct component $R_{Dd,w}$ and the flanking transmission components $R_{ii,w}$.

$$R_{W}^{i} = -10\log\left[10^{-\frac{R_{Dd,W}}{10}} + \sum_{i,j=1}^{n} 10^{-\frac{R_{ij,W}}{10}} + \frac{A_{0}}{S_{s}} \sum_{j=1}^{n} 10^{-\frac{D_{n,j,W}}{10}}\right] (dB)$$

The sound reduction index for flanking transmission paths Rij,w can be estimated as:

$$R_{ij,w} = \frac{R_{i,w} + R_{j,w}}{2} + \Delta R_{ij,w} + K_{ij} + 10\log\frac{S}{I_0 I_{ij}} (dB)$$

where:

- $R_{i,w} \; e \; R_{j,w} \qquad \mbox{are sound reduction evaluation indices of flanking elements i and j respectively;}$
- $\Delta R_i, \Delta R_j \qquad \mbox{are sound reduction index increases due to the installation} \\ \mbox{of architectural finishes for element i in the source envi$ $ronment and/or element j in the receiving environment;}$

K_{ij} vibration reduction index through the joint

S is the area of the separating element and l_{ij} is the length of the joint between the separating wall and the flanking elements i and j, l_0 being a reference length of 1 m.

Among the input parameters required by the calculation model, the sound reduction indices can be obtained from accredited laboratory measurements or from the manufacturers of construction elements. Additionally, a number of open-access databases offer data for frequently used construction solutions. The ΔR_w can be estimated by modelling the wall assembly in terms of a mass-spring-mass system (EN ISO 12354 Annex D).

The most critical parameter to estimate is the **VIBRATION REDUCTION INDEX** K_{ij} . This quantity represents the vibration energy dissipating into the junction, and is associated with the structural coupling of the elements. High values of K_{ij} generate the best junction performance. Standard EN ISO 12354 provides some predictive estimates of two standard T and X-shaped joints for CLT structures, which are shown on the right, but the experimental data available is still limited. This is why Rothoblaas has invested in several measurement campaigns to provide usable data with this calculation model.

$$STC_{ij} = \frac{STC_i}{2} + \frac{STC_j}{2} + K_{ij} + max(\Delta STC_i, \Delta STC_i) + \frac{min(\Delta STC_i, \Delta STC_i)}{2} + 10\log \frac{S_s}{I_o I_{ij}}$$

ASTM & K_{ii}

DETERMINING THE VIBRATION REDUCTION INDEX K_{IJ} IN TIMBER STRUCTURES

INCORPORATING OF RESILIENT LAYERS LIKE XYLOFON, PIANO, CORK AND ALADIN STRIPE

The MyProject software can be used during design, or follow one of the methods below, extrapolated from internationally valid standards.

METHOD 1 BASED ON EN ISO 12354:2017 FOR HOMOGENEOUS STRUCTURES

Typically, this formula has been considered for lightweight wood structures, i.e. considering the connections between elements, which are considered rigid and homogeneous. For CLT structures this is certainly an approximation.

Kij depends on the shape of the junction and the type of elements composing it, especially their surface mass. In case of T- or X-joints, use the following expressions, shown aside.

For both cases:

 $K_{ij} = K_{ijrigid} + \Delta L$

if the flanking transmission path passes through a junction

 $K_{ij} = K_{ijrigid} + 2\Delta L$ if the flanking transmission path passes through two joints

M=10log(mi_/mi)

where:

mi⊥

is the mass of one of the elements, the one placed perpendicular to the other.

Therefore, the transmitted vibration reduction value is:

∆Lw = 10log(1/ft)

for loads exceeding 750 kN/m² on a resilient layer with Δ Lmin = 5 dB $f_t = ((G/t_i)(\sqrt{\rho_1 \rho_2}))^{1,5}$

where.

G	is the Young tangential module (MN/m²)
t _i	is the thickness of the resilient material (m)
ρ_1 and ρ_2	are, respectively, the density of connected elements 1 and 2 $$

METHOD 2 F.3 EMPIRICAL DATA FOR JUNCTIONS CHARACTERIZED BY K_{ii} ISO 12354-1:2017

CLT construction elements are elements in which the structural reverberation time is, in most cases, mainly

determined by the connecting elements.

In the case of CLT structures weakly bound together, the side transmission contribution can be determined according to the following relations, valid if $0.5 < (m_1/m_2) < 2$.

METHOD 1 - CALCULATING K_{iiriaid}

Solution 1 - T-SHAPED JOINT

K₁₃= 5,7 + 14,1 M + 5,7 M² dB K₁₂= 5,7 + 5,7 M² = K₂₃ dB

Solution 2 - T-SHAPED JOINT with resilient layer

K₂₃= 5,7 + 14,1 M + 5,7 M² dB K₁₂= 5,7 + 5,7 M² = K₂₃ dB

Solution 3 - X-SHAPED JOINT

$$\begin{split} & \mathsf{K}_{13} = 8,7 + 17,1 \; \mathsf{M} + 5,7 \; \mathsf{M}^2 \; \mathsf{dB} \\ & \mathsf{K}_{12} = 8,7 + 5,7 \; \mathsf{M}^2 = \mathsf{K}_{23} \; \mathsf{dB} \\ & \mathsf{K}_{24} = 3,7 + 14,1 \; \mathsf{M} + 5,7 \; \mathsf{M}^2 \; \mathsf{dB} \\ & \mathsf{O} \leq \mathsf{K}_{24} \leq -4 \; \mathsf{dB} \end{split}$$

METHOD 2 - CALCULATING K_{ijrigid}

Solution 1 - T-SHAPED JOINT K_{13} = 22 + 3,3log(f/f_u)

 $f_k = 500 \text{ Hz}$ $K_{2z} = 15 + 3,3 \log(f/f_k)$

Solution 1 - X-SHAPED JOINT

 $K_{13} = 10 - 3,3 \log(f/f_k) + 10 M$ $K_{24} = 23 - 3,3 \log(f/f_k)$ $f_k = 500 Hz$ $K_{14} = 18 - 3,3 \log(f/f_k)$

THE SIMPLIFIED METHOD

A CALCULATION EXAMPLE USING EN ISO 12354

INPUT DATA

The EN ISO 12354 norms provide two methods to calculate the acoustic performance of a partition: a detailed method and the simplified method.

Regarding airborne sound insulation, the simplified calculation model predicts the apparent sound energy as a single value based on the acoustic performance of the elements involved in the junction. Below is an example of a calculation evaluating the apparent sound reduction index between two adjacent rooms.

In order to determine the acoustic performance of assembly from the acoustic performance of its components, it is important to determine for every junction element:

- the geometry of the partition (S)
- the acoustic properties of the partition (R_{w})
- the coupling between structural elements (K_{ii})
- the characteristics of each layer composing the partition

SECTION

PARTITION CHARACTERISTICS

SEPARATING WALL (S)

25 mm	plasterboard
50 mm	mineral wool
75 mm	CLT
50 mm	mineral wool
25 mm	plasterboard

INTERNAL WALLS 1

12,5 mm	gypsum	fibreboard
78 mm	CLT	
12,5 mm	gypsum	fibreboard

INTERNAL WALLS 2

75 mm	CLT
50 mm	mineral wool
25 mm	plasterboard

EXTERNAL WALLS 3 4

6 mm	plaster
60 mm	wood fibre panel
160 mm	mineral wool
90 mm	CLT
70 mm	fir panels
50 mm	mineral wool
15 mm	plasterboard
25 mm	plasterboard

FLOORS 5 6 7 8

70 mm	concrete screed
0,2 mm	PE membrane
30 mm	under floor membrane
50 mm	backfill (loose)
140 mm	CLT
60 mm	mineral wool
15 mm	plasterboard

Data for acoustic characterisation of the assemblies was taken from DataHolz.

www.dataholz.com

CALCULATION OF DIRECT AND FLANKING TRANSMISSION COMPONENTS

The apparent sound reduction index is obtained from the contribution of the direct component and the flanking transmission paths, based on the following equation:

$$R'_{w} = -10\log\left[10^{-\frac{R_{Dd,w}}{10}} + \sum_{i,j=1}^{n} 10^{-\frac{R_{ij,w}}{10}} + \frac{A_{0}}{S_{s}} \sum_{j=1}^{n} 10^{-\frac{D_{n,j,w}}{10}}\right] (dB)$$

Considering only the first order transmission, there are three flanking transmission paths for each combination of assemblies i-j, for a total of 12 Rij calculated using the equation:

$$R_{ij,w} = \frac{R_{i,w} + R_{j,w}}{2} + \Delta R_{ij,w} + K_{ij} + 10\log \frac{S}{I_0 I_{ij}} (dB)$$

DETERMINING THE APPARENT SOUND REDUCTION INDEX

The simplified calculation model has the unquestioned advantage of providing an easy-to-use tool to predict sound insulation.

On the other hand, its application is quite delicate for CLT structures because the damping of each structural element is strongly affected by the assembly. It really deserves a dedicated modelling approach. Moreover, CLT panels provide poor insulation at low frequencies, thus the use of frequency weighted indices might return results which do not provide an accurate representation of actual behaviour in the low frequency region. Therefore the use of the detailed method is advised for accurate predictive analysis.

In the example provided, sound insulation for direct transmission gives R_w of 53 dB, if the contributions of flanking transmission are considered, R'_w decreases to 51 dB.

ACOUSTIC CHARACTERISTICS OF THE ASSEMBLIES

Path of	S	R _w	m'
transmission	[m ²]	[dB]	[kg/m ²]
S	8,64	53	69
1	10,8	38	68
2	10,8	49	57
3	10,8	55	94
4	10,8	55	94
5	12,8	63	268
6	12,8	63	268
7	12,8	63	268
8	12,8	63	268

CALCULATING R_{ii}

Path of transmission	R _{ij} [dB]	Path of transmission	R _{ij} [dB]
1-S	60	S-6	83
3-S	68	S-8	75
5-S	83	1-2	64
7-S	75	3-4	77
S-2	66	5-6	75
S-4	68	7-8	75

CHARACTERISATION OF THE JOINTS

JUNCTION 1-2-S

X-shaped joint detail 12

JOINT 3-4-S

T-shaped joint, detail 5

JOINT 5-6-S

X-shaped joint with resilient profile detail 43

JOINT 7-8-S

X-shaped joint with resilient profile detail 43

Download all the documentation about the project from www.rothoblaas.com

T-JOINT | PERIMETER WALLS EN ISO 10848-1/4

STRUCTURE

upper wall: CLT 5 layers (s: 100 mm) (2,4 m x 3 m) floor: CLT 5 layers (s: 100 mm) (2,4 m x 3,5 m) lower wall: CLT 5 layers (s: 100 mm) (2,4 m x 3 m)

FASTENING SYSTEM

6 HBS partially threaded screws Ø8 x 240 mm (HBS8240), spacing 440 mm

2 angle brackets **NINO** (NINO15080) with resilient profile **XYLOFON PLATE** (XYL3555150) , 146 x 55 x 77 x 2,5 mm, spacing 1760 mm

fastening pattern on CLT: 31 screws 5 x 50 mm

RESILIENT PROFILE

PIANO A

position: between the upper wall and the floor dimensions: width = 100 mm thickness = 6 mm length = 2,40 m contact area: continuous strip (same width as the wall) applied load [N/m²]: 22000

T-JOINT | PERIMETER WALLS EN ISO 10848-1/4

STRUCTURE

upper wall: CLT 5 layers (s: 100 mm) (2,4 m x 3 m) floor: CLT 5 layers (s: 100 mm) (2,4 m x 3,5 m) lower wall: CLT 5 layers (s: 100 mm) (2,4 m x 3 m)

FASTENING SYSTEM

6 HBS partially threaded screws Ø8 x 240 mm (HBS8240), spacing 440 mm

2 angle brackets **NINO** (NINO15080) with resilient profile **XYLOFON PLATE** (XYL3555150) , 146 x 55 x 77 x 2,5 mm, spacing 1760 mm

fastening pattern on CLT: 31 screws 5 x 50

RESILIENT PROFILE

PIANO C

position: between the upper wall and the floor + between the floor and the lower wall

dimensions: width = 100 mm thickness = 6 mm length = 2,40 m

contact area: continuous strip (same width as the wall)

applied load [kN/m²]: 1300

100				100] 4	140		440		440		440		440	10	0
		1)													
2			<u> </u> 100													
					320										320	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₁₄ [dB]	15,5	16,0	16,1	17,7	16,9	19,1	18,0	16,6	17,6	18,8	17,1	19,1	19,8	16,1	17,8	21,1
	Κ₁₄ =	17,6	i dB		ŀ	< _{14,0}	= 13	3,3 d	B			Δ l,14	4 = 4	l,3 d	B	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₁₂ [dB]	16,4	17,2	12,6	18,4	16,5	16,3	19,2	14,9	17,1	17,5	16,1	19,8	23,6	19,3	21,1	26,5
	K ₁₂ =	17,6	6 dB		ŀ	< _{12,0}	= 14	4,5 d	B			Δ ι,1	2 = 3	5,1 d	B	
f [Hz]	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
K₂₄ [dB]	15,4	26,0	18,0	20,1	21,5	23,4	21,3	16,4	19,3	23,5	23,5	31,1	30,3	30,4	31,7	29,7

 $\overline{K_{24}} = 23,4 \text{ dB}$

 $\overline{K_{24.0}} = 17,3 \text{ dB}$

 $\Delta_{l,24} = 6,1 \, dB$

SOLUTIONS FOR LIGHTWEIGHT FLOORS

PIANO A is a resilient profile that works with reduced loads, which can be used to reduce vibrations even in floors with little construction mass.

Its effectiveness has also been tested at the University of Innsbruck as a desolidarising profile for ribs in dry floors.

SET UP

The receiving and transmitting rooms have a floor area of 21.5 \mbox{m}^2 (5.24 m lenght; 4.10 m width).

The volume of the transmitting room is 53.0 m^3 , and the volume of the receiving room 85.0 m^3 .

LABORATORY MEASUREMENT | DRY FLOOR SLAB_1

MEASUREMENT OF AIRBORNE SOUND INSULATION EVALUATION INDEX REFERENCE STANDARD: ISO 16283-1

FLOOR SLAB

Surface = 21,5 m² Mass = 167 kg/m² Receiving room volume = 75,52 m³

reinforced gypsum-fibre board (44 kg/m²) (thickness: 32 mm)
high density cardboard and sand panels (34,6 kg/m²) (thickness: 30 mm)
PIANO A

(4) wood batten 50 x 100 mm

5 PIANO A

6 CLT (thickness: 160 mm)

AIRBORNE SOUND INSULATION

$R_w (C;C_{tr}) = 52 (0; -7) dB$

Testing laboratory: Universität Innsbruck Arbeitsbereich für Holzbau Technikerstraße 13A - 602 Innsbruck. **Test protocol:** M02_L_220906_Balkenaufbau-Entkoppelung_oben_unten.

LABORATORY MEASUREMENT | DRY FLOOR SLAB_2

MEASUREMENT OF THE EVALUATION INDEX OF THE REDUCTION OF THE IMPACT SOUND PRESSURE LEVEL REFERENCE STANDARD ISO 10140-3

FLOOR SLAB

Surface = 21,5 m² Mass = 167 kg/m² Receiving room volume = 75,52 m³

reinforced gypsum-fibre board (44 kg/m²) (thickness: 32 mm)
high density cardboard and sand panels (34,6 kg/m²) (thickness: 30 mm)
PIANO A

(4) wood batten 50 x 100 mm

5 PIANO A

6 CLT (thickness: 160 mm)

■ IMPACT SOUND INSULATION

L'_{n,w,PIANO} (C_l) = **53 (-1) dB** IIC = **57**

Testing laboratory: Universität Innsbruck Arbeitsbereich für Holzbau Technikerstraße 13A - 602 Innsbruck. **Test protocol:** M02_L_220906_Balkenaufbau-Entkoppelung_oben_unten.

COMPARATIVE ANALYSIS | DRY FLOOR SLAB_2

MEASUREMENT OF THE EVALUATION INDEX OF THE REDUCTION OF THE IMPACT SOUND PRESSURE LEVEL REFERENCE STANDARD ISO 10140-3

FLOOR SLAB

Surface = 21,5 m² Mass = 167 kg/m² Receiving room volume = 75,52 m³

1) reinforced gypsum-fibre board (44 kg/m²) (thickness: 32 mm)

(2) high density cardboard and sand panels (34,6 kg/m²) (thickness: 30 mm)

(3) PIANO A

(4) wood batten 50 x 100 mm

5 PIANO A

6 CLT (thickness: 160 mm)

IMPACT SOUND INSULATION

 $IIC_0 = 26$

Testing laboratory: Universität Innsbruck Arbeitsbereich für Holzbau Technikerstraße 13A - 602 Innsbruck. **Test protocol:** M02_L_220906_Balkenaufbau-Entkoppelung_oben_unten.

IIC = 57

IIC = 50

Solutions for Building Technology

CONTENTS

ALADIN	4
PRODUCT CHOICE AND DETERMINATION OF K _{ij}	6
ALADIN EXTRA SOFT14	8
ALADIN SOFT	0
THE CEN MODEL (EN ISO 12354)	2
DETERMINING THE VIBRATION REDUCTION INDEX K _{ij} IN TIMBER STRUCTURES	3
THE SIMPLIFIED METHOD	4
FLANKSOUND PROJECT	6
MEASUREMENT CONFIGURATION 15 L-SHAPED JOINT 155 L-SHAPED JOINT 155 L-SHAPED JOINT 160	7 3 9
ON SITE MEASUREMENTS 16	1
ON-SITE MEASUREMENT CLT FLOOR	2
ACOUSTIC AND MECHANICAL INTERACTION164	4
SHEAR AND TENSILE STRENGTH TITAN + ALADIN CERTIFIED IN ETA	6
ALADIN RECOMMENDATIONS FOR INSTALLATION16	7

ALADIN RESILIENT SOUNDPROOFING PROFILE

CODES AND DIMENSIONS

CODE	version	В	L	S	pcs
		[mm]	[m]	[mm]	
ALADIN115	EXTRA SOFT	115	50	7	1
ALADIN95	SOFT	95	50	5	1

PRODUCT COMPARISON

Anti-vibration ALADIN dampens vibrations due to its ability to absorb and dissipate the energy of the system	page 7
FLANKSOUND PROJECT K _{ij} measured according to ISO EN 10848	page 16
On site measurements effectiveness verified through the measurement of passive acoustic requirements in constructed buildings	page 21
Static to acoustic interaction Experimental data on the static performance of a timber-to-steel connection with ALADIN interposed	page 24

PRODUCT CHOICE AND DETERMINATION OF K_{IJ}

DESIGNING THE CORRECT PROFILE ACCORDING TO THE LOAD

Resilient profiles must be correctly loaded in order to isolate the low to medium frequencies of structurally transmitted vibrations: guidance on how to proceed with the evaluation of the product are given below. It is advisable to add the permanent load value at 50% of the characteristic value of the accidental load.

It is necessary to focus on the operating conditions and not the ultimate limit state conditions. This is because the goal is to insulate the building from noise during normal operating conditions and not during design limit states.

PRODUCT SELECTION

The product can also be selected using the application tables (see for example the following table for ALADIN EXTRA SOFT).

TABLE OF USE

CODE	в		load for acoustic optimisation ⁽²⁾ [kN/m] //bt//b]			compression for acoustic optimisation ^[2] [N/mm ²] /psi/		reduction [mm] [mil]		
	[mm]	,1(n)	fi	rom		a	from	a	from	3
ALADIN115	115	41/2	4	2969	18	13317	0.035	0,157	0,7	2
	57,5 (divided)	2 1/4	2	1484	9	6658	5.1	22.8	28	79

Note: The static behaviour of the material in compression is evaluated, considering that the deformations due to the loads are static. This is because a building is not affected by significant movement phenomena, nor dynamic deformation.

Rothoblaas has chosen to define a load range that allows good acoustic performance and avoids excessive deformation and differential movements in the materials, including the building's final architectural finishes. It is possible to use profiles with loads outside the indicated range if the resonance frequency of the system and the deformation of the profile at the ultimate limit state are assessed.

DETERMINATION OF PERFORMANCE

Once the loads have been identified, it is necessary to determine the design frequency - that is the stimulating frequency for the element from which the structure needs to be isolated. Below is an example, to make the explanation easier and simple to understand.

Suppose there is a load of 0,015 N/mm² acting on the profile. In this case, we used the ALADIN EXTRA SOFT product, because the load is not particularly high. Reading the graph, it can be seen that the profile has a resonance frequency of around 21 Hz.

transmission = $f/f_0 = 5$

Then the transmission graph is used, placing the value 5 obtained on the x-axis and intersecting the degree of the transmission curve.

It follows that the transmission of the material is negative i.e. that the material is able to insulate around -11 dB.

TRANSMISSION IS POSITIVE WHEN THE MATERIAL TRANSMITS AND IS NEGATIVE WHEN THE PROFILE BEGINS TO INSULATE. This means this figure shows that the product, loaded in this way, insulates 11 dB at a reference frequency of 100 Hz.

The same thing can be done using the attenuation graph. The percentage of vibration attenuated at the initial design frequency is obtained. The attenuation is also calculated with the load conditions referring to the design frequency of 100 Hz.

attenuation = $f/f_0 = 5$

The graph is used by placing the calculated value of 5 on the x-axis and intersecting the attenuation curve.

It follows that the material's attenuation is optimal, i.e., the material can isolate more than 93 % of the transmission.

transmission [dB]

Essentially, the same result is obtained with two different inputs, but when deformation is set, the starting point is the mechanical performance, not the acoustic one.

In the light of this fact, Rothoblaas always recommends starting with the design frequency and the loads to optimise the material based on the real conditions.

ALADIN EXTRA SOFT

TABLE OF USE

CODE	В	load for acoustic optimisation ⁽¹⁾		compression for acoustic optimisation ⁽¹⁾		deformation	
CODE		[kN/m]		[N/mm ²]		[mm]	
	[mm]	from	to	from	to	from	to
ALADIN115	115	4	18	0.075	0 1 5 7	0.7	2
	57,5 (divided)	2	9	0,035	0,157	0,7	2

⁽¹⁾Resilient profiles must be properly loaded in order to isolate medium/low frequency vibrations transmitted structurally. It is advisable to assess the load according to the operating conditions because the building must be acoustically insulated under everyday load conditions (add the value of the permanent load to 50 per cent of the characteristic value of the incidental load $Q_{linear} = q_{qk} + 0.5 q_{vk}$).

TECHNICAL DATA

Properties	standard	value
Acoustic improvement $\Delta L'_{nT,w}$	ISO 10848	4 dB
Dynamic stiffness s' (airtight condition) ⁽²⁾	UNI 29052	76 MN/m ³
Dynamic stiffness s' (non-airtight condition) ⁽²⁾	UNI 29052	23 MN/m ³
Density	ASTM D 297	0,50 g/cm ³
Compression set 50% (22h, 23°C)	EN ISO 815	<u>≤</u> 25%
Compression set 50% (22h, 40°C)	EN ISO 815	<u>≤</u> 35%
Water absorption 48h	-	3%
Reaction to fire	EN 13501-1	class E
Max processing temperature	-	100°C

(2) ISO standards require for measurement with loads between 0.4 and 4 kPa and not with the product operating load. The contribution of air is not calculated because the product is extremely impermeable to air (extremely high flow resistance figures).

HIGH PERFORMANCE

Soundproofing up to 4 dB in accordance with EN ISO 140-7, thanks to the innovative composition of the mixture; reduced application thickness.

NATURAL FREQUENCY AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

DEFORMATION AND LOAD

TRANSMISSIBILITY

ALADIN SOFT

TABLE OF USE

CODE	В	load for acoustic optimisation ⁽¹⁾ [kN/m]		compression for acoustic optimisation ⁽¹⁾ [N/mm ²]		deformation [mm]	
	[mm]	from	to	from	to	from	to
ALADIN95	95	18	30	0.190	0.716	0 5	1 5
	47,5 (divided)	9	15	0,189	0,310	0,5	T'2

⁽¹⁾Resilient profiles must be properly loaded in order to isolate medium/low frequency vibrations transmitted structurally. It is advisable to assess the load according to the operating conditions because the building must be acoustically insulated under everyday load conditions (add the value of the permanent load to 50 per cent of the characteristic value of the incidental load $Q_{\text{linear}} = q_{\text{qk}} + 0.5 q_{\text{vk}}$).

TECHNICAL DATA

Properties	standard	value
Acoustic improvement $\Delta L'_{nT,w}$	ISO 10848	3 dB
Dynamic stiffness s' (airtight condition) ⁽²⁾	UNI 29052	221 MN/m ³
Dynamic stiffness s' (non-airtight condition) ⁽²⁾	UNI 29052	115 MN/m ³
Density	ASTM D 297	1,1 g/cm ³
Compression set 50% (22h, 70°C)	EN ISO 815	50%
Tensile strength	EN ISO 37	≥ 9 N/mm ²
Elongation at failure	EN ISO 37	≥ 500%
Water absorption 48h	-	< 1 %
Reaction to fire	EN 13501-1	class E
Max processing temperature	-	100°C

(2) ISO standards require for measurement with loads between 0,4 and 4 kPa and not with the product operating load. The contribution of air is not calculated because the product is extremely impermeable to air (extremely high flow resistance figures).

RELIABLE

Extruded EPDM compound to optimise sound absorption. It also offers high chemical stability and is VOC-frees.

NATURAL FREQUENCY AND LOAD

DEFORMATION AND NATURAL FREQUENCY

Deformation [%]

ATTENUATION

Attenuation [%]

DEFORMATION AND LOAD

TRANSMISSIBILITY

THE CEN MODEL (EN ISO 12354)

The CEN model proposed in the EN ISO 12354 series of standards provides a powerful tool to predict the acoustic performance of a partition from the characteristics of the construction elements. The EN ISO 12354 series has been expanded to provide more specific information regarding timber frame and CLT structures.

EN ISO 12354-1:2017 Airborne sound insulation between rooms.

EN ISO 12354-2:2017 Impact sound soundproofing between rooms.

APPARENT SOUND REDUCTION INDEX

EN ISO 12354 norms provide two methods to calculate the acoustic performance of a partition: a detailed method and the simplified method. When using the simplified calculation model, disregarding the presence of small penetrations and airborne transmission paths $D_{n,j,w}$, the apparent sound reduction index R'_w can be calculated as the logarithmic sum of the direct component $R_{Dd,w}$ and the flanking transmission components $R_{ij,w}$.

$$R'_{w} = -10\log\left[10^{-\frac{R_{Dd,w}}{10}} + \sum_{i,j=1}^{n} 10^{-\frac{R_{ij,w}}{10}} + \frac{A_{0}}{S_{s}} \sum_{j=1}^{n} 10^{-\frac{D_{n,j,w}}{10}}\right] (dB)$$

The sound reduction index for flanking transmission paths $\mathsf{R}_{ij,w}$ can be estimated as:

$$R_{ij,w} = \frac{R_{i,w} + R_{j,w}}{2} + \Delta R_{ij,w} + K_{ij} + 10\log\frac{S}{I_0 I_{ij}} (dB)$$

where:

- $R_{i,w} \mathrel{\text{e}} R_{j,w}$ are sound reduction evaluation indices of flanking elements i and j respectively;
- $\Delta R_i, \Delta R_j \qquad \mbox{are sound reduction index increases due to the installation} \\ \mbox{of architectural finishes for element i in the source envi$ $ronment and/or element j in the receiving environment;}$

K_{ii} vibration reduction index through the joint

S is the area of the separating element and l_{ij} is the length of the joint between the separating wall and the flanking elements i and j, l_0 being a reference length of 1 m.

Among the input parameters required by the calculation model, the sound reduction indices can be obtained from accredited laboratory measurements or from the manufacturers of construction elements. Additionally, a number of open-access databases offer data for frequently used construction solutions. The ΔR_w can be estimated by modelling the wall assembly in terms of a mass-spring-mass system (EN ISO 12354 Annex D).

The most critical parameter to estimate is the **VIBRATION REDUCTION INDEX** K_{ij} . This quantity represents the vibration energy dissipating into the junction, and is associated with the structural coupling of the elements. High values of K_{ij} generate the best junction performance. Standard EN ISO 12354 provides some predictive estimates of two standard T and X-shaped joints for CLT structures, which are shown on the right, but the experimental data available is still limited. This is why Rothoblaas has invested in several measurement campaigns to provide usable data with this calculation model.

The ASTM standards currently do not provide a predictive model for the evaluation of flanking sound transmission, so the ISO 12354 and ISO 10848 standards are used and "translated" into the ASTM metric.

$$STC_{ij} = \frac{STC_i}{2} + \frac{STC_j}{2} + K_{ij} + max(\Delta STC_i, \Delta STC_i) + \frac{min(\Delta STC_i, \Delta STC_i)}{2} + 10\log \frac{S_s}{I_0 I_{ij}}$$

ASTM & K_{ii}

DETERMINING THE VIBRATION REDUCTION INDEX K_{IJ} IN TIMBER STRUCTURES

INCORPORATING OF RESILIENT LAYERS LIKE XYLOFON, PIANO, CORK AND ALADIN

The MyProject software can be used during design, or follow one of the methods below, extrapolated from internationally valid standards.

METHOD 1 BASED ON EN ISO 12354:2017 FOR HOMOGENEOUS STRUCTURES

Typically, this formula has been considered for lightweight wood structures, i.e. considering the connections between elements, which are considered rigid and homogeneous. For CLT structures this is certainly an approximation.

 K_{ij} depends on the shape of the junction and the type of elements composing it, especially their surface mass. In case of T- or X-joints, use the following expressions, shown aside.

For both cases:

 $\mathsf{K}_{ij} = \mathsf{K}_{ijrigid} + \triangle \mathsf{L}$

if the flanking transmission path passes through a junction

 $K_{ij} = K_{ijrigid} + 2\Delta L$ if the flanking transmission path passes through two joints

M=10log(mi_/mi)

where:

mi⊥

is the mass of one of the elements, the one placed perpendicular to the other.

Therefore, the transmitted vibration reduction value is:

∆Lw = 10log(1/ft)

 $f_t = ((G/t_i)(\sqrt{\rho_1 \rho_2}))^{1.5}$

for loads exceeding 750 kN/m² on a resilient layer with ΔL_{min} = 5 dB

where:

which c.	
G	is the Young tangential module (MN/m²)
t _i	is the thickness of the resilient material (m)
ρ_1 and ρ_2	are, respectively, the density of connected elements 1 and 2

METHOD 2 F.3 EMPIRICAL DATA FOR JUNCTIONS CHARACTERIZED BY K_{ii} ISO 12354-1:2017

CLT construction elements are elements in which the structural reverberation time is, in most cases, mainly

determined by the connecting elements.

In the case of CLT structures weakly bound together, the side transmission contribution can be determined according to the following relations, valid if $0.5 < (m_1/m_2) < 2$.

METHOD 1 - CALCULATING K

Solution 1 - T-SHAPED JOINT

 $K_{13} = 5.7 + 14.1 \text{ M} + 5.7 \text{ M}^2 \text{ dB}$ $K_{12} = 5.7 + 5.7 \text{ M}^2 = K_{23} \text{ dB}$

Solution 2 - T-SHAPED JOINT with resilient layer

K₂₃= 5,7 + 14,1 M + 5,7 M² dB K₁₂= 5,7 + 5,7 M² = K₂₃ dB

Solution 3 - X-SHAPED JOINT

$$\begin{split} & \mathsf{K}_{13} = 8,7 + 17,1 \; \mathsf{M} + 5,7 \; \mathsf{M}^2 \; \mathsf{dB} \\ & \mathsf{K}_{12} = 8,7 + 5,7 \; \mathsf{M}^2 = \mathsf{K}_{23} \; \mathsf{dB} \\ & \mathsf{K}_{24} = 3,7 + 14,1 \; \mathsf{M} + 5,7 \; \mathsf{M}^2 \; \mathsf{dB} \\ & \mathsf{O} \leq \mathsf{K}_{24} \leq -4 \; \mathsf{dB} \end{split}$$

METHOD 2 - CALCULATING K_{ijrigid}

Solution 1 - T-SHAPED JOINT K_{13} = 22 + 3,3log(f/f_u)

 $f_k = 500 \text{ Hz}$ $K_{2z} = 15 + 3,3 \log(f/f_k)$

Solution 1 - X-SHAPED JOINT

THE SIMPLIFIED METHOD

A CALCULATION EXAMPLE USING EN ISO 12354

INPUT DATA

The EN ISO 12354 norms provide two methods to calculate the acoustic performance of a partition: a detailed method and the simplified method.

Regarding airborne sound insulation, the simplified calculation model predicts the apparent sound energy as a single value based on the acoustic performance of the elements involved in the junction. Below is an example of a calculation evaluating the apparent sound reduction index between two adjacent rooms.

In order to determine the acoustic performance of assembly from the acoustic performance of its components, it is important to determine for every junction element:

- the geometry of the partition (S)
- the acoustic properties of the assembly (R_w)
- the connection between structural elements (K_{ii})
- the characteristics of each layer composing the assembly

SECTION

PARTITION CHARACTERISTICS

SEPARATING WALL (S)

25 mm	plasterboard
50 mm	mineral wool
75 mm	CLT
50 mm	mineral wool
25 mm	plasterboard

INTERNAL WALLS 1

12,5 mm	gypsum fibreboard
78 mm	CLT
12,5 mm	gypsum fibreboard

INTERNAL WALLS 2

75 mm	CLT
50 mm	mineral wool
25 mm	plasterboard

EXTERNAL WALLS 3 4

6 mm	plaster
60 mm	wood fibre panel
160 mm	mineral wool
90 mm	CLT
70 mm	fir panels
50 mm	mineral wool
15 mm	plasterboard
25 mm	plasterboard

FLOORS 5 6 7 8

70 mm	concrete screed
0,2 mm	PE membrane
30 mm	under floor membrane
50 mm	backfill (loose)
140 mm	CLT
60 mm	mineral wool
15 mm	plasterboard

Data for acoustic characterisation of the assemblies was taken from DataHolz.

www.dataholz.com

CALCULATION OF DIRECT AND FLANKING TRANSMISSION COMPONENTS

The apparent sound reduction index is obtained from the contribution of the direct component and the flanking transmission paths, based on the following equation:

$$R'_{w} = -10\log\left[10^{-\frac{R_{Dd,w}}{10}} + \sum_{i,j=1}^{n} 10^{-\frac{R_{ij,w}}{10}} + \frac{A_{0}}{S_{s}} \sum_{j=1}^{n} 10^{-\frac{D_{n,j,w}}{10}}\right] (dB)$$

Considering only the first order transmission, there are three flanking transmission paths for each combination of partitions i-j, for a total of 12 R_{ij} calculated using the equation:

$$R_{ij,w} = \frac{R_{i,w} + R_{j,w}}{2} + \Delta R_{ij,w} + K_{ij} + 10\log \frac{S}{I_0 I_{ij}} (dB)$$

DETERMINING THE APPARENT SOUND REDUCTION INDEX

The simplified calculation model has the unquestioned advantage of providing an easy-to-use tool to predict sound insulation.

On the other hand, its application is quite delicate for CLT structures because the damping of each structural element is strongly affected by the assembly. It really deserves a dedicated modelling approach. Moreover, CLT panels provide poor insulation at low frequencies, thus the use of frequency weighted indices might return results which do not provide an accurate representation of actual behaviour in the low frequency region. Therefore the use of the detailed method is advised for accurate predictive analysis.

In the example provided, sound insulation for direct transmission gives $R_{\rm w}$ of 53 dB, if the contributions of flanking transmission are considered, $R_{\rm w}'$ decreases to 51 dB.

Path of	S	R _w	mʻ
transmission	[m ²]	[dB]	[kg/m ²]
S	8,64	53	69
1	10,8	38	68
2	10,8	49	57
3	10,8	55	94
4	10,8	55	94
5	12,8	63	268
6	12,8	63	268
7	12,8	63	268
8	12,8	63	268

CALCULATING R_{ij}

Path of transmission	R _{ij} [dB]	Path of transmission	R _{ij} [dB]
1-S	60	S-6	83
3-S	68	S-8	75
5-S	83	1-2	64
7-S	75	3-4	77
S-2	66	5-6	75
S-4	68	7-8	75

CHARACTERISATION OF THE JOINTS

JUNCTION 1-2-S

X-shaped joint detail 12

JOINT 3-4-S

T-shaped joint, detail 5

JOINT 5-6-S

X-shaped joint with resilient profile detail 43

JOINT 7-8-S

X-shaped joint with resilient profile detail 43

Download all the documentation about the project from www.rothoblaas.com

FLANKSOUND PROJECT

EXPERIMENTAL MEASUREMENTS OF K_{ii} FOR CLT JOINTS

Rothoblaas has therefore promoted research aimed at measuring the K_{ij} vibration reduction index for a variety of CLT panel joints, with the dual objective of providing specific experimental data for the acoustic design of CLT buildings and contributing to the development of calculation methods.

L, T and X-shaped joints were tested during the measurement project.

CLT panels were provided by seven different manufacturers and therefore underwent different production processes, showing different characteristics such as the number and thickness of lamellas, side gluing of layers, and anti-shrinkage kerf cuts in the core. Different kinds of screws and connectors were tested, as well as different resilient layers at the wall-floor junction.

The test set-up was arranged in the warehouse at Rothoblaas headquarters in Cortaccia (prov. Bolzano).

The vibration reduction index measurements were carried out in compliance with EN ISO 10848.

^ ^ * ** EN ISO 10848

- 7 different CLT manufacturers
- L, T, X-shaped vertical and horizontal joints
- influence of type and number of screws
- influence of type and number of angle brackets
- influence of type and number of hold-downs
- use of resilient layers

FASTENING

HBS

VGZ

countersunk screw

fully threaded screw

with cylindrical head

TITAN F angle bracket for shear loads on frame walls

loads

WHT

angle bracket for tensile

TITAN N angle bracket for shear loads in solid walls

SOUNDPROOFING

XYLOFON high performance resilient profile

ALADIN resilient profile

CONSTRUCTION SEALING airtight profile

X-RAD

complete range of connection plates

MEASUREMENT CONFIGURATION

MEASUREMENT SETUP: EQUIPMENT AND DATA PROCESSING

The vibration reduction index K_{ij} is calculated as:

$$K_{ij} = \frac{D_{v,ij} + D_{v,ji}}{2} + 10\log \frac{I_{ij}}{\sqrt{a_i a_i}} (dB)$$

where:

D _{v,ij} (D _{v,ji})	is the difference in vibration velocity between the ele- ments i and j (j and i) when element i (j) is excited (dB)
l _{ij}	is the length of the junction shared between the elements \ensuremath{i} and \ensuremath{j}

a are the equivalent absorption lengths elements of i and j

$$a = \frac{2.2\pi^2 S}{c_0 T_s} \sqrt{\frac{f_{ref}}{f}} (m)$$

|--|

f is the frequency

T_s is the structural reverberation time

The sound source consisted of an electrodynamic shaker with sinusoidal peak force of 200 N, which was mounted on a heavyweight base and screwed to the CLT panels using a plate.

The velocity levels were measured using a pink noise source signal, filtered at 30 Hz in order to get reliable results from 50 Hz onwards. Structural reverberation times were calculated from impulse responses acquired using ESS test signals. The accelerometers were fixed to the panels using magnets. Eyelets were screwed to the panels with screws whose length was at least half of the thickness of the panels, in order to reach the innermost layer of the panel. The vibration reduction indices are reported in the one-third octave bands ranging from 100 to 3150 Hz, together with the value averaged over the one-third octave bands from 200 to 1250 Hz.

A. Speranza, L. Barbaresi, F. Morandi, " **Experimental analysis of flanking transmission of different connection systems for CLT panels** " in Proceedings of the World Conference on Timber Engineering 2016, Vienna, August 2016.

L. Barbaresi, F. Morandi, M. Garai, A. Speranza, "**Experimental measurements of flanking transmission in CLT structures**" in Proceedings of the International Congress on Acoustics 2016, Buenos Aires, September 2016.

L. Barbaresi, F. Morandi, M. Garai, A. Speranza, "**Experimental analysis of flankng transmission in CLT structures**" of Meetings on Acoustics (POMA), a serial publication of the Acoustical Society of America - POMA-D-17-00015.

L. Barbaresi, F. Morandi, J. Belcari, A. Zucchelli, Alice Speranza, "**Optimising the mechanical characterisation of a resilient interlayer for the use in timber construction**" in Proceedings of the International congress on sound and vibration 2017, London, July 2017.

STRUCTURE

floor: CLT 5 layers (s: 160 mm) (2,3 m x 4,0 m) lower wall: CLT 5 layers (s: 100 mm) (4,0 m x 2,3 m)

FASTENING SYSTEM

13 **HBS** partially threaded screws Ø8 x 240 mm (HBS8240), spacing 300 mm 5 angle brackets **TITAN** (TTN240) spacing 800 mm fastening pattern: total nailing 72 screws 5 x 50 2 hold down **WHT** (WHT440)

RESILIENT PROFILE

ALADIN SOFT

position: between the lower wall and the floor.
dimensions: width = 95 mm thickness = 6 mm length = 4,0 m
contact area: continuous strip (same width as the wall)
applied load [kN/m]: structure self weight

K₁₂ = **11,5 dB**

STRUCTURE

floor: CLT 5 layers (s: 160 mm) (2,3 m x 4,0 m) lower wall: CLT 5 layers (s: 100 mm) (4,0 m x 2,3 m)

FASTENING SYSTEM

13 **HBS** partially threaded screws Ø8 x 240 mm (HBS8240), spacing 300 mm 5 angle brackets **TITAN** (TTN240) spacing 800 mm fastening pattern: total nailing 72 screws 5 x 50 2 hold down **WHT** (WHT440)

RESILIENT PROFILE

ALADIN SOFT

position: between the lower wall and the floor.
dimensions: width = 95 mm thickness = 6 mm length = 4,0 m
contact area: continuous strip (same width as the wall)
applied load [kN/m]: 2

 $\overline{K_{12}} = 11,7 \text{ dB}$

STRUCTURE

floor: CLT 5 layers (s: 160 mm) (2,3 m x 4,0 m) lower wall: CLT 5 layers (s: 100 mm) (4,0 m x 2,3 m)

FASTENING SYSTEM

13 **HBS** partially threaded screws Ø8 x 240 mm (HBS8240), spacing 300 mm 5 angle brackets **TITAN** (TTN240) with resilient profile **ALADIN** spacing 800 mm fastening pattern: total nailing 72 screws 5 x 50 2 hold down **WHT** (WHT440)

RESILIENT PROFILE

ALADIN SOFT

position: between the lower wall and the floor.
dimensions: width = 95 mm thickness = 6 mm length = 4,0 m
contact area: continuous strip (same width as the wall)
applied load [kN/m]: structure self weight

 $\overline{K_{12}} = 11,4 \text{ dB}$

ON SITE MEASUREMENTS

The effectiveness of ALADIN was also verified by measuring passive acoustic requirements in constructed buildings. ALADIN has been used in residential buildings, accommodation facilities, university campuses, schools, health centres and mixed-use multi-storey buildings.

The performance achieved did not disappoint expectations and ALADIN proved to be an excellent partner for reducing flanking sound transmission.

UNIVERSITY CAMPUS

Victoria (AU)

description	university student residence with 150 beds
type of structure	CLT panels
location	Victoria (Australia)
products	ALADIN, XYLOFON

MULTI-STOREY BUILDING

Toronto (CA)

description 6-storey building for residential use	
type of structure	CLT panels
location	Toronto (Canada)
products	ALADIN, XYLOFON

ON-SITE MEASUREMENT | CLT FLOOR

MEASUREMENT OF THE EVALUATION INDEX OF THE REDUCTION OF THE IMPACT SOUND PRESSURE LEVEL REFERENCE STANDARDS: ISO 140-7

FLOOR SLAB

Surface = 31 m² **Receiving room volume** = 75 m³

1 Timber floor (thickness: 15 mm)

- (2) SILENT STEP (thickness: 2 mm)
- 3 Concrete screed (thickness: 70 mm)

4 BARRIER 100

(5) Mineral wool insulation (thickness: 30 mm) s' \leq 10 MN/m³

(6) Gravel fill (thickness: 80 mm) (1600 kg/m³)

7 CLT (thickness: 146 mm)

(8) Solid wood batten (thickness: 50 mm base: 150 mm)

9 Air chamber

(10) Low density mineral wool insulation (thickness: 120 mm)

11 Plasterboard panel x2 (thickness: 25 mm)

12 ALADIN EXTRA SOFT

IMPACT SOUND INSULATION

without ALADIN EXTRA SOFT

with ALADIN EXTRA SOFT

 $L'_{nT,w,0}$ (C₁) = 38 (1) dB NISR_{ASTM} = 73

$L'_{nT,w,ALADIN}$ (C_l) = **34 (0) dB**

 $NISR_{ASTM} = 75$

ON-SITE MEASUREMENT | CLT FLOOR

MEASUREMENT OF THE EVALUATION INDEX OF THE REDUCTION OF THE IMPACT SOUND PRESSURE LEVEL **REFERENCE STANDARDS: ISO 140-7**

FLOOR SLAB

Surface = 31 m^2 **Receiving room volume** = 75 m³

1) Timber floor (thickness: 15 mm)

- (2) SILENT STEP (thickness: 2 mm)
- (3) Concrete screed (thickness: 70 mm)

(4) **BARRIER 100**

(5) Mineral wool insulation (thickness: 30 mm) s' \leq 10 MN/m³

(6) Gravel fill (thickness: 80 mm) (1600 kg/m³)

(7) CLT (thickness: 146 mm)

(8) Solid wood batten (thickness: 50 mm base: 150 mm)

(9) Air chamber

(10) Low density mineral wool insulation (thickness: 120 mm)

(11) Plasterboard panel x2 (thickness: 25 mm)

(12) ALADIN SOFT

IMPACT SOUND INSULATION

without ALADIN EXTRA SOFT

with ALADIN EXTRA SOFT

 $L'_{nT,w,0}(C_1) = 38$ (1) dB $NISR_{ASTM} = 73$

$L'_{nT,w,ALADIN}$ (C_l) = **35 (0) dB**

 $NISR_{ASTM} = 74$

ACOUSTIC AND MECHANICAL INTERACTION

ACOUSTIC - MECHANICAL BEHAVIOR OF TITAN + ALADIN

The TITAN + ALADIN system has been tested in order to determine its mechanical and acoustic behaviour. The experimental campaigns carried out within the Seismic-Rev project and in collaboration with multiple research institutes, have shown how the characteristics of the resilient profile influence the mechanical performance of the connection. From an acoustic point of view, with the Flanksound project, it has been demonstrated that the ability to dampen vibrations through the joint is strongly influenced by the type and number of connections.

EXPERIMENTAL INVESTIGATION: MECHANICAL BEHAVIOUR

Within the Seismic-Rev project, in collaboration with the University of Trento and the Institute for BioEconomy (IBE - San Michele all'Adige), an investigation project was launched to evaluate the mechanical behaviour of TITAN angle brackets used in combination with different soundproofing profiles.

FIRST LABORATORY PHASE

Monotonic shear tests were carried out, in the first experimental phase, using linear loading procedures in displacement control, aimed at evaluating the variation in ultimate strength and stiffness offered by the TTF200 connection with LBA Ø4 x 60 mm nails.

Test samples: CLT panels TITAN TTF200 angle bracket

NUMERIC MODELLING

The results of the preliminary investigation campaign highlighted the importance of carrying out more accurate analyses of the influence of acoustic profiles on the mechanical behaviour of TTF200 and TTN240 metal angle brackets in terms of overall strength and stiffness. For this reason it was decided to carry out further evaluations by means of finite element numerical modelling, starting from the behaviour of the individual nail. In the case under study, the influence of three different resilient profiles were analysed: XYLOFON 35 (6 mm), ALADIN SOFT (5 mm) and ALADIN EXTRA SOFT (7 mm).

Tx deformation [mm] for induced displacement 8 mm

VARIATION OF MECHANICAL SHEAR STRENGTH AS A FUNCTION OF SOUNDPROOFING PROFILE

The comparison of the results between the different configurations analysed is reported in terms of load variation at 15 mm displacement ($F_{15 mm}$) and elastic stiffness at 5 mm ($K_{s,5 mm}$).

TITAN TTF200

configurations		sp	$F_{15 mm}$	$\Delta F_{15 \text{ mm}}$	K_{5mm}	${\bigtriangleup}K_{5mm}$
		[mm]	[kN]	[kN/mm]	
-	TTF200	-	68,4	-	9,55	-
	TTF200 + ALADIN SOFT red.*	3	59,0	-14 %	8.58	-10 %
	TTF200 + ALADIN EXTRA SOFT red.*	4	56,4	-18 %	8.25	-14 %
	TTF200 + ALADIN SOFT	5	55,0	-20 %	7.98	-16 %
	TTF200 + XYLOFON PLATE	6	54,3	-21 %	7,79	-18 %
	TTF200 + ALADIN EXTRA SOFT	7	47,0	-31 %	7,30	-24 %

 Reduced thickness: reduced profile height due to the trapezoidal section and consequent crushing induced by the head of the nail during operation.

TITAN TTN240

configurations		$F_{15 mm}$	$\Delta F_{15 \text{ mm}}$	K_{5mm}	${\bigtriangleup}K_{5mm}$
	[mm]	[kN]		[kN/mm]]
→ TTN240	-	71,9	-	9,16	-
TTN2400 + ALADIN SOFT red.*	3	64,0	-11 %	8,40	-8 %
TTN240 + ALADIN EXTRA SOFT red.*	4	61,0	-15 %	8.17	-11 %
TTN240 + ALADIN SOFT	5	59,0	-18 %	8,00	-13 %
TTN240 + XYLOFON PLATE	6	58,0	-19 %	7,81	-15 %
TTN240 + ALADIN EXTRA SOFT	7	53,5	-26 %	7.47	-18 %

 Reduced thickness: reduced profile height due to the trapezoidal section and consequent crushing induced by the head of the nail during operation.

EXPERIMENTAL RESULTS

The results obtained show a reduction in the strength and stiffness of the devices following the interposition of the soundproofing profiles. This variation is highly dependent on the thickness of the profile. In order to limit the reduction of strength it is necessary to adopt profiles with real thickness of approximately 6 mm or less.

SHEAR AND TENSILE STRENGTH TITAN + ALADIN CERTIFIED IN ETA

Not only experimental tests, but also values certified by independent assessment bodies that certify the performance characteristics of non-standard construction products.

TITAN

The strength of TITAN coupled with ALADIN below the horizontal flange was calculated from the load-carrying capacity of nails or screws according to "Blaß, H.J. und Laskewitz, B. (2000); Load-Carrying Capacity of Joints with Dowel-Type fasteners and Interlayers.", conservatively neglecting the profile stiffness.

Being an innovative angle bracket and one of the first certified on the market, a highly conservative approach was chosen and ALADIN was simulated as an equivalent air layer. The angular capacity is therefore largely underestimated.

	fastening				F
ANGLE BRACKET	type	ØxL	n _V	n _H	[□] 2/3,Rk
		[mm]	[pcs]	[pcs]	[kN]
	LBA nails	4 x 60	36	36	28,9
TTN240 + ALADIN SOFT	LBS screws	5 x 50	36	36	27,5
	HBS PLATE screws	8 x 80	14	14	27,5
115240 + ALADIN EXTRA SOFT	LBS screws	5 x 50	36	36	25,8

TIMBER-TO-TIMBER FASTENING PATTERN

36 LBA nails/LBS screws

36 LBA nails/LBS screws

TTS240

14 LBA nails/LBS screws

14 LBA nails/LBS screws

Discover the complete **TITAN** range on our website or request the catalogue from your salesman.

www.rothoblaas.com

ALADIN | RECOMMENDATIONS FOR INSTALLATION

APPLICATION WITH STAPLES

APPLICATION WITH PRIMER SPRAY

APPLICATION WITH DOUBLE BAND

SILENT FLOOR PUR TECHNICAL MANUAL

CONTENTS

ACOUSTIC PROBLEMS OF FLOORS
SILENT FLOOR PUR
SILFLOORPUR10
LABORATORY MEASUREMENT CLT FLOOR 1
LABORATORY MEASUREMENT CLT FLOOR 1
LABORATORY MEASUREMENT CLT FLOOR 2
LABORATORY MEASUREMENT CLT FLOOR 2
LABORATORY MEASUREMENT CLT FLOOR 3
LABORATORY MEASUREMENT CLT FLOOR 3
LABORATORY MEASUREMENT FRAME WALL 4A
LABORATORY MEASUREMENT CLT FLOOR 4B
LABORATORY MEASUREMENT FRAME WALL 5A
LABORATORY MEASUREMENT FRAME WALL 5B
LABORATORY MEASUREMENT FRAME WALL 6A
LABORATORY MEASUREMENT FRAME WALL 6B
LABORATORY MEASUREMENT FRAME WALL 7A
LABORATORY MEASUREMENT FRAME WALL 7B 191

LFLOORPUR15193
LABORATORY MEASUREMENT CLT FLOOR 1
LABORATORY MEASUREMENT CLT FLOOR 1
LABORATORY MEASUREMENT CLT FLOOR 2
LABORATORY MEASUREMENT CLT FLOOR 2

SILFLOORPUR20	199

LABORATORY MEASUREMENT	CLT FLOOR 1	.200
LABORATORY MEASUREMENT	CLT FLOOR 1	. 201

ACOUSTIC PROBLEMS OF FLOORS

WHAT IS IMPACT NOISE?

When it comes to floors, impact noise is the main acoustic problem because it constantly affects them. When a body impacts on the floor structure, the noise quickly spreads throughout the building either by air, affecting the nearest rooms, or by structure, propagating into the most distant rooms.

WHAT IS AIRBORNE NOISE?

Airborne noise is generated in the air and, after an initial airborne phase, is transported both by air and by structure. This is a problem that affects both walls and floors, but if we are talking about floors, the most important problem is certainly impact noise.

HERE IS THE SOLUTION

In order to be able to minimise the discomfort caused by impact noise, a stratigraphic package should be designed consisting of layers of different materials that are disconnected from each other and are able to dissipate the energy transmitted by the impact.

MASS-SPRING-MASS SYSTEM

A floating screed system such as the one shown in the images below can be schematised with a mass-spring-mass system, in which the structural floor represents the mass, the impact-absorbing product is equivalent to the spring, and the upper screed with the floor constitutes the second mass of the system. In this context, "resilient layer" is defined as the element with the spring function characterised by its own *dynamic stiffness s*'.

HOW IS THE IMPACT NOISE LEVEL MEASURED?

The impact noise level is a measure of the disturbance perceived in a room when an impact noise source is activated in the upper room. It can be measured both on site and in the laboratory. Clearly, ideal conditions exist in the laboratory for the effects of lateral transmission to be neglected, as the laboratory itself is constructed so that the walls are decoupled from the ceiling.

TAPPING MACHINE method

The TAPPING MACHINE is used to simulate "light" and "hard" impacts, such as walking with heeled shoes or the impact caused by falling objects.

RUBBER BALL method

The RUBBER BALL is used to simulate "soft" and "heavy" impacts, such as a barefoot walk or a child jumping.

HOW TO CHOOSE THE BEST PRODUCT

DYNAMIC STIFFNESS – s'

Expressed in MN/m³, it is measured according to EN 29052-1 and expresses the deformation capacity of a material that is subjected to a dynamic stress. Consequently, it indicates the ability to dampen the vibrations generated by an impact noise.

The measurement method involves, first, measuring the *apparent dynamic stiffness* s'_t of the material and then correcting it, if necessary, to obtain the *real dynamic stiffness* s'. Dynamic stiffness depends in fact on the *flow resistivity r*, which is measured in the lateral direction of the sample. If the material has specific flow resistivity values, the apparent dynamic stiffness must be corrected by adding the contribution of the gas contained within the material: air.

VISCOUS SLIDING UNDER COMPRESSION - CREEP

Expressed as a percentage, it is measured according to EN 1606 and represents the long-term deformation of a material under constant load to be simulated. The measurement in the laboratory must be carried out over a period of at least 90 days.

COMPRESSIBILITY - c

The compressibility class expresses the behaviour of a material while subjected to screed loading. During measurement, the product is subjected to different loads and its thickness is measured. The compressibility measurement is carried out to understand what loads the underscreed product can withstand, in order to avoid cracking and splitting of screeds.

CORRECT INSTALLATION

The technological solution of the floating screed is one of the most widely used and one of the most effective, but in order to achieve satisfactory results it is important that the system is designed and implemented correctly.

The resilient layer must be continuous because any gap would represent an acoustic bridge. When installing underscreed mats, care must be taken not to create discontinuities.

It is important to use the SILENT EDGE perimeter strip to ensure that the resilient layer is continuous around the entire perimeter of the room. The SILENT EDGE should only be trimmed after the floor has been installed and grouted.

The skirting board must be installed after the SI-LENT EDGE has been cut, ensuring that it is always suitably raised from the floor.

IIC vs L_w

IIC stands for **Impact Insulation Class** and is the value obtained by subtracting the noise level measured in the receiving room from the noise level measured in the source room. Impact Insulation Class, sometimes referred to as Impact Isolation Class, measures the resistance of the floor construction assembly against the propagation of impact-generated noise.

SILENT FLOOR PUR

RESILIENT HIGH PERFORMANCE UNDERSCREED MEMBRANE MADE OF RECYCLED POLYMERS

CERTIFIED

The effectiveness of the underscreed membrane has been certified in the labs of the Centre for Industrial Research of the University of Bologna.

SUSTAINABILITY

Recycled and recyclable. The product intelligently reuses polyurethane from production waste that would otherwise have to be disposed of.

HIGH PERFORMANCE

The special composition offers excellent elasticity, reaching attenuation values over 30 dB.

COMPOSITION

polyethylene vapour barrier

polyurethane agglomerate made from pre-consumer industrial waste

CODES AND DIMENSIONS

CODE	H ⁽¹⁾	L	thickness	A _f ⁽²⁾	
	[m]	[m]	[mm]	[m ²]	
SILFLOORPUR10	1,6	10	10	15	6
SILFLOORPUR15	1,6	8	15	12	6
SILFLOORPUR20	1,6	6	20	9	6

 $^{(1)}$ 1.5 m of polyurethane agglomerate and vapour barrier + 0.1 m of vapour barrier for overlap with integrated adhesive strip. $^{(2)}$ Without considering the overlap area.

SAFE

Polyurethane is a noble polymer that maintains elasticity over time, without subsidence or changes in performance.

VOC REQUIREMENTS

The membrane composition safeguards health and meets the recommended VOC limits.

PRODUCT STRATIGRAPHY COMPARISON

SILFLOORPUR10

TECHNICAL DATA

Properties	standard	value
Surface mass m	-	0,9 kg/m ²
Density p	-	80 kg/m ³
Apparent dynamic stiffness s' _t	EN 29052-1	12,5 MN/m ³
Dynamic stiffness s'	EN 29052-1	12,5 MN/m ³
Theoretical estimate of impact sound pressure level attenuation $\Delta L_w^{(1)}$	ISO 12354-2	32,5 dB
System resonance frequency f ₀ ⁽²⁾	ISO 12354-2	50,6 Hz
Impact sound pressure level attenuation $\Delta L_w^{(3)}$	ISO 10140-3	21 dB
Thermal resistance R _t	-	0,46 m ² K/W
Resistance to airflow r	ISO 9053	< 10,0 kPa·s·m ⁻²
Compressibility class	EN 12431	CP2
CREEP Viscous sliding under compression X _{ct} (1,5 kPa)	EN 1606	7,50 %
Compression deformation stress	ISO 3386-1	17 kPa
Thermal conductivity λ	-	0,035 W/m·K
Specific heat c	-	1800 J/kg·K
Water vapour transmission Sd	-	> 100 m
Reaction to fire	EN 13501-1	class F
VOC emission classification	French decree no. 2011-321	A+

 ${}^{(1)}\Delta L_{W}{=}$ (13 lg(m'))-(14,2 lg(s'))+20,8 [dB] con m'= 125 kg/m^2.

 $^{(2)}f_0 = 160 \sqrt{(s'/m')} \text{ con } m' = 125 \text{ kg/m}^2.$

⁽³⁾Measured in the laboratory on 200 mm CLT floor. See the manual for more information on configuration.

EN ISO 12354-2 ANNEX C | ESTIMATE ΔL_W (FORMULA C.4) E ΔL (FORMULA C.1)

The following tables show how the attenuation in dB ($\Delta L_W \in \Delta L$) of SILFLOORPUR10 varies as the load m' (i.e., the surface mass of the layers with which SILFLOORPUR10 is loaded) changes.

SILFLOORPUR10

	s't or s'	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	[MN/m ³]
	load m'	50	75	100	125	150	175	200	225	250	275	300	[kg/m ²]
	ΔL_w	27,3	29,6	31,2	32,5	33,5	34,4	35,1	35,8	36,4	36,9	37,4	[dB]
	f ₀	80,0	65,3	56,6	50,6	46,2	42,8	40,0	37,7	35,8	34,1	32,7	[Hz]
ΔL in frequency													
[Hz]	100	2,9	5,5	7,4	8,9	10,1	11,1	11,9	12,7	13,4	14,0	14,6	[dB]
[Hz]	125	5,8	8,5	10,3	11,8	13,0	14,0	14,8	15,6	16,3	16,9	17,5	[dB]
[Hz]	160	9,0	11,7	13,5	15,0	16,2	17,2	18,1	18,8	19,5	20,1	20,7	[dB]
[Hz]	200	11,9	14,6	16,5	17,9	19,1	20,1	21,0	21,7	22,4	23,0	23,6	[dB]
[Hz]	250	14,8	17,5	19,4	20,8	22,0	23,0	23,9	24,6	25,3	26,0	26,5	[dB]
[Hz]	315	17,9	20,5	22,4	23,8	25,0	26,0	26,9	27,7	28,3	29,0	29,5	[dB]
[Hz]	400	21,0	23,6	25,5	26,9	28,1	29,1	30,0	30,8	31,5	32,1	32,6	[dB]
[Hz]	500	23,9	26,5	28,4	29,8	31,0	32,0	32,9	33,7	34,4	35,0	35,5	[dB]
[Hz]	630	26,9	29,5	31,4	32,9	34,0	35,0	35,9	36,7	37,4	38,0	38,6	[dB]
[Hz]	800	30,0	32,6	34,5	36,0	37,2	38,2	39,0	39,8	40,5	41,1	41,7	[dB]
[Hz]	1000	32,9	35,5	37,4	38,9	40,1	41,1	41,9	42,7	43,4	44,0	44,6	[dB]
[Hz]	1250	35,8	38,5	40,3	41,8	43,0	44,0	44,8	45,6	46,3	46,9	47,5	[dB]
[Hz]	1600	39,0	41,7	43,5	45,0	46,2	47,2	48,1	48,8	49,5	50,1	50,7	[dB]
[Hz]	2000	41,9	44,6	46,5	47,9	49,1	50,1	51,0	51,7	52,4	53,0	53,6	[dB]
[Hz]	2500	44,8	47,5	49,4	50,8	52,0	53,0	53,9	54,6	55,3	56,0	56,5	[dB]
[Hz]	3150	47,9	50,5	52,4	53,8	55,0	56,0	56,9	57.7	58,3	59,0	59,5	[dB]

EN ISO 12354-2 Annex C - formula C.4

$$\Delta L_{w} = \left(13 \text{ lg}(m')\right) - \left(14,2 \text{ lg}(s')\right) + 20,8 \text{ dB}$$

EN ISO 12354-2 Annex C - formula C.1

$$\Box \Delta L = \left(30 \text{ lg } \frac{\text{f}}{\text{f}_0}\right) \text{dB}$$

EN ISO 12354-2 Annex C - formula C.2

f₀ = 160
$$\sqrt{\frac{s'}{m'}}$$

IMPACT NOISE INSULATION ACCORDING TO SCREED THICKNESS

A predictive study of the sound insulation of airborne and impact noise in buildings cannot be determined by calculations alone, but must be supported by experimental data and measurements in the laboratory and on site.

The acoustics laboratory at the University of Northern British Columbia is designed optimized for testing the sound insulation performance of floors in timber buildings. In fact, the receiving room is built of frame walls made of mullions and interposed rock wool insulation and OSB sheathing and two layers of gypsum board.

Impact noise assessment is measured according to ASTM E1007-15 using the impact sound machine and a sound pressure meter according to ISO. The tests involve evaluating the acoustic behavior of the floor slab according to the thickness of the screed (38 mm, 50 mm, 100 mm).

MATERIALS

- (1) **X-LAM FLOOR SLABS:** The tested floor slab consists of three of 139 mm thick CLT 139V panels. Each CLT panel is 4.0 m long and 1.8 m wide. All joints are sealed with acoustic sealant and tapes. The edges between floors and walls are also sealed with acoustic sealant. The AIIC of the bare CLT floor slab is 21 (L'n,w = 89dB)
- (2) **SILENT FLOOR PUR:** high-performance resilient agglomerate underscreed membrane made from pre-consumer industrial waste and PE vapour barrier.

3 Screed: ordinary concrete

- thickness 38 mm, 91 kg/m²
- thickness 50 mm, 120 kg/m²
- thickness 100 mm, 240 kg/m²

RESULTS

 CLT
 CLT + SILENT FLOOR PUR + 38 mm concrete
 CLT + SILENT FLOOR PUR + 50 mm concrete
 CLT + SILENT FLOOR PUR + 100 mm concrete

AIIC (dBA)	Ľ _{n,w} (dB)	Acoustic improvement (dB)
 21	89	
 41	69	20
 42	68	21
 48	62	27

Testing laboratory: University of Northernn British Columbia Test protocol: 20200720

LABORATORY MEASUREMENT | CLT FLOOR 1

AIRBORNE SOUND INSULATION ACCORDING TO ISO 16283-1

FLOOR SLAB Surface = 21,64 m² Mass = 167 kg/m² Receiving room volume = 75,52 m³

- (1) Reinforced gypsum-fibre board (44 kg/m²) (thickness: 32 mm)
- High density cardboard and sand panels (34,6 kg/m²) (thickness: 30 mm)
- 3 SILENT FLOOR PUR SILFLOORPUR10 (thickness: 10 mm)
- 4 CLT (thickness: 160 mm)
- **(5) XYLOFON 35 XYL35100**
- 6 TITAN SILENT
- 7 CLT (thickness: 120 mm)

AIRBORNE SOUND INSULATION

NOTES:

Testing laboratory: Universität Innsbruck Arbeitsbereich für Holzbau Technikerstraße 13A - 6020 Innsbruck. Test protocol: M07B_L211217_m-Bodenaufbau

⁽¹⁾ Increase due to the addition of layers no. 1, 2 and 3.

LABORATORY MEASUREMENT | CLT FLOOR 1

IMPACT SOUND INSULATION ACCORDING TO ISO 16283-1

Surface = 21,64 m² Mass = 167 kg/m² Receiving room volume = 75,52 m³

- 1 Reinforced gypsum-fibre board (44 kg/m²) (thickness: 32 mm)
- (2) high density cardboard and sand panels (34,6 kg/m²), (thickness: 30 mm)
- 3 SILENT FLOOR PUR- SILFLOORPUR10 (s: 10 mm)
- (4) CLT (thickness: 160 mm)
- (5) XYLOFON 35 XYL35100
- (6) TITAN SILENT
- 7 CLT (thickness: 120 mm)

Impact sound NOISE INSULATION

Testing laboratory: Universität Innsbruck Arbeitsbereich für Holzbau Technikerstraße 13A - 6020 Innsbruck. Test protocol: M07B_T211217_m-Bodenaufbau NOTES:

 $^{(1)}$ Decrease due to the addition of layers no. 1 and no. 2. $^{(2)}$ Increase due to the addition of layers no. 1 and no. 2.

LABORATORY MEASUREMENT | CLT FLOOR 2

MEASUREMENT OF AIRBORNE SOUND INSULATION EVALUATION INDEX REFERENCE STANDARD ISO 10140-2

FLOOR SLAB

Surface = 12 m² Mass = 230 kg/m² Receiving room volume = 54,7 m³

(1) Concrete screed (2000 kg/m³) (thickness: 50 mm)

2 SILENT FLOOR PUR (thickness: 10 mm)

 $\overline{(3)}$ Mineral wool insulation s' \leq 10 MN/m³ (110 kg/m³) (thickness 40 mm)

(4) Light screed with EPS (500 kg/m³) (thickness: 120 mm)

(5) BARRIER SD150

6 CLT 5 layers (thickness: 150 mm)

AIRBORNE SOUND INSULATION

Testing laboratory: Alma Mater Studiorum Università di Bologna Test protocol: 01L/RothoB
MEASUREMENT OF THE EVALUATION INDEX OF THE REDUCTION OF THE IMPACT SOUND PRESSURE LEVEL REFERENCE STANDARD: ISO 10140-3 AND EN ISO 717-2

FLOOR SLAB

Surface = 12 m² Mass = 230 kg/m² Receiving room volume = 54,7 m³

(1) Concrete screed (2000 kg/m³), (thickness: 50 mm)

(2) **SILENT FLOOR PUR** (thickness: 10 mm)

(3) Mineral wool insulation s' \leq 10 MN/m³ (110 kg/m³), (thickness: 40 mm)

(4) Light screed with EPS (500 kg/m³) (thickness: 120 mm)

(5) BARRIER SD150

6 CLT 5 layers (thickness: 150 mm)

IMPACT SOUND INSULATION

Testing laboratory: Alma Mater Studiorum Università di Bologna Test protocol: 01R/RothoB

NOTES:

 $^{(1)}$ Decrease due to the addition of layers no. 1 and no. 2. $^{(2)}$ Increase due to the addition of layers no. 1 and no. 2.

MEASUREMENT OF THE EVALUATION INDEX OF THE REDUCTION OF THE IMPACT SOUND PRESSURE LEVEL REFERENCE STANDARD: ISO 10140-3 AND EN ISO 717-2

FLOOR SLAB

Surface = 13,71 m² Surface mass = 215,1 kg/m² Receiving room volume = 60,1 m³

Concrete screed (thickness: 50 mm); (2600 kg/m³); (130 kg/m²)
SILENT FLOOR PUR - SILFLOORPUR10 (thickness: 10 mm)
CLT 5 layers (thickness: 200 mm); (420 kg/m³); (84 kg/m²)

■ IMPACT SOUND INSULATION

Testing laboratory: Building Physics Lab | Libera Università di Bolzano. Test protocol: Pr. 2022-rothoLATE-L2.

NOTES:

 $^{(1)}$ Decrease due to the addition of layers no. 1 and no. 2. $^{(2)}$ Increase due to the addition of layers no. 1 and no. 2.

MEASUREMENT OF THE EVALUATION INDEX OF THE REDUCTION OF THE IMPACT SOUND PRESSURE LEVEL RUBBER BALL METHOD | REFERENCE STANDARD: ISO 10140-3 AND EN ISO 717-2

FLOOR SLAB Surface = 13,71 m² Surface mass = 215,1 kg/m² Receiving room volume = 60,1 m³

Concrete screed (thickness: 50 mm); (2600 kg/m³); (130 kg/m²)
SILENT FLOOR PUR - SILFLOORPUR10 (thickness: 10 mm)
CLT 5 layers (thickness: 200 mm); (420 kg/m³); (84 kg/m²)

■ IMPACT SOUND INSULATION

f L_{i,F,max} [dB] [Hz] 50 77.3 63 74,8 80 66,5 72,7 100 125 70.0 160 66,5 200 66,3 250 59,4 315 55,4 400 50,8 500 44,5 630 40.4

Testing laboratory: Building Physics Lab | Libera Università di Bolzano. Test protocol: Pr. 2022-rothoLATE-L2.

LABORATORY MEASUREMENT | FRAME WALL 4A

MEASUREMENT OF AIRBORNE SOUND INSULATION EVALUATION INDEX REFERENCE STANDARD: ISO 10140-2 AND EN ISO 717-1

WALL

Surface = 10,16 m² Surface mass = 33,6 kg/m² Receiving room volume = 60,6 m³

 Plasterboard (thickness: 12,5 mm); (720 kg/m³); (9 kg/m²)
SILENT FLOOR PUR - SILFLOORPUR10 strips (thickness: 10 mm)
Timber frame (thickness: 170 mm) timber struts 60 x 140 mm - spacing 600 mm 2x rock wool (thickness: 60mm), (70 kg/m³)

OSB (thickness: 15 mm), (550 kg/m³)

AIRBORNE SOUND INSULATION

Testing laboratory: Building Physics Lab | Libera Università di Bolzano. Test protocol: Pr. 2022-rothoLATE-R6a. NOTES:

⁽¹⁾ Increase due to the addition of layers no. 1 and no. 2.

MEASUREMENT OF AIRBORNE SOUND INSULATION EVALUATION INDEX REFERENCE STANDARD: ISO 10140-2 AND EN ISO 717-1

WALL

Surface = 10,16 m² Surface mass = 42,9 kg/m² Receiving room volume = 60,6 m³

 Plasterboard (thickness: 12,5 mm); (720 kg/m³); (9 kg/m²)
SILENT FLOOR PUR - SILFLOORPUR10 strips (thickness: 10 mm)
Timber frame (thickness: 170 mm) timber struts 60 x 140 mm - spacing 600 mm 2x rock wool (thickness: 60mm), (70 kg/m³) OSB (thickness: 15 mm), (550 kg/m³)

(4) SILENT FLOOR PUR - SILFLOORPUR10 strips (thickness: 10 mm)

(5) Plasterboard (thickness: 12,5 mm); (720 kg/m³); (9 kg/m²)

AIRBORNE SOUND INSULATION

Testing laboratory: Building Physics Lab | Libera Università di Bolzano.

NOTES:

⁽¹⁾ Increase due to the addition of layers no. 1 and no. 2.

Test protocol: Pr. 2022-rothoLATE-R6b.

LABORATORY MEASUREMENT | FRAME WALL 5A

MEASUREMENT OF AIRBORNE SOUND INSULATION EVALUATION INDEX REFERENCE STANDARD: ISO 10140-2 AND EN ISO 717-1

WALL

Surface = 10,16 m² Surface mass = 38,6 kg/m² Receiving room volume = 60,6 m³

 Plasterboard (thickness: 12,5 mm); (720 kg/m³); (9 kg/m²)
SILENT WALL BYTUM SA (thickness: 4 mm), (1250 kg/m³), 5 kg/m²)
SILENT FLOOR PUR - SILFLOORPUR10 strips (thickness: 10 mm)
Timber frame (thickness: 170 mm) timber struts 60 x 140 mm - spacing 600 mm

2x rock wool (thickness: 60mm), (70 kg/m³) OSB (thickness: 15 mm), (550 kg/m³)

AIRBORNE SOUND INSULATION

Testing laboratory: Building Physics Lab | Libera Università di Bolzano. Test protocol: Pr. 2022-rothoLATE-R5a. NOTES:

⁽¹⁾ Increase due to the addition of layers no. 1 and no. 2.

LABORATORY MEASUREMENT | FRAME WALL 5B

MEASUREMENT OF AIRBORNE SOUND INSULATION EVALUATION INDEX REFERENCE STANDARD: ISO 10140-2 AND EN ISO 717-1

receiving room

WALL

Surface = 10,16 m² Surface mass = 52,9 kg/m² Receiving room volume = 60,6 m³

 Plasterboard (thickness: 12,5 mm); (720 kg/m³); (9 kg/m²)
SILENT WALL BYTUM SA (thickness: 4 mm), (1250 kg/m³), 5 kg/m²)
SILENT FLOOR PUR - SILFLOORPUR10 strips (thickness: 10 mm)
Timber frame (thickness: 170 mm) timber struts 60 x 140 mm - spacing 600 mm 2x rock wool (thickness: 60mm), (70 kg/m³) OSB (thickness: 15 mm), (550 kg/m³)

(5) SILENT FLOOR PUR - SILFLOORPUR10 strips (thickness: 10 mm)

6 SILENT WALL BYTUM SA (thickness: 4 mm), (1250 kg/m³), 5 kg/m²)

 $\overline{(7)}$ Plasterboard (thickness: 12,5 mm); (720 kg/m³); (9 kg/m²)

AIRBORNE SOUND INSULATION

Testing laboratory: Building Physics Lab | Libera Università di Bolzano.

NOTES:

⁽¹⁾ Increase due to the addition of layers no. 1 and no. 2.

Test protocol: Pr. 2022-rothoLATE-R5b.

LABORATORY MEASUREMENT | FRAME WALL 6A

MEASUREMENT OF AIRBORNE SOUND INSULATION EVALUATION INDEX REFERENCE STANDARD: ISO 10140-2 AND EN ISO 717-1

receiving room

WALL

Surface = 10,16 m² Surface mass = 37,2 kg/m² Receiving room volume = 60,6 m³

 Plasterboard (thickness: 12,5 mm); (720 kg/m³); (9 kg/m²)
Counter wall (thickness: 40 mm timber battens 40 x 60 mm - spacing 600 mm

rock wool (thickness: 40mm), (38 kg/m³)

3 SILENT FLOOR PUR - SILFLOORPUR10 strips (thickness: 10 mm)

 Timber frame (thickness: 170 mm) timber struts 60 x 140 mm - spacing 600 mm 2x rock wool (thickness: 60mm), (70 kg/m³) OSB (thickness: 15 mm), (550 kg/m³)

AIRBORNE SOUND INSULATION

Testing laboratory: Building Physics Lab | Libera Università di Bolzano. Test protocol: Pr. 2022-rothoLATE-R12a. NOTES:

⁽¹⁾ Increase due to the addition of layers no. 1 and no. 2.

LABORATORY MEASUREMENT | FRAME WALL 6B

MEASUREMENT OF AIRBORNE SOUND INSULATION EVALUATION INDEX REFERENCE STANDARD ISO 10140-2

AIRBORNE SOUND INSULATION

WALL

Surface = 10,16 m² Surface mass = 52,2 kg/m² Receiving room volume = 60,6 m³

Plasterboard (thickness: 12,5 mm); (720 kg/m³); (9 kg/m²)
Counter wall (thickness: 40 mm)

timber battens $40 \times 60 \text{ mm}$ - spacing 600 mm; rock wool (thickness: 40 mm), (38 kg/m^3)

- (3) SILENT FLOOR PUR SILFLOORPUR10 strips (thickness: 10 mm)
- Timber frame (thickness: 170 mm) timber struts 60 x 140 mm - spacing 600 mm; 2x rock wool (thickness: 60mm), (70 kg/m³) OSB (thickness: 15 mm), (550 kg/m³)
- (5) SILENT FLOOR PUR SILFLOORPUR10 strips (thickness: 10 mm), (110 kg/m³), (1,1 kg/m²)

(6) Counter wall (thickness: 40 mm) timber battens 40 x 60 mm - spacing 600 mm; rock wool (thickness: 40 mm), (38 kg/m³)

7 Plasterboard (thickness: 12,5 mm); (720 kg/m³); (9 kg/m²)

Testing laboratory: Building Physics Lab | Libera Università di Bolzano.

NOTES:

⁽¹⁾ Increase due to the addition of layers no. 1 and no. 2.

Test protocol: Pr. 2022-rothoLATE-R12b.

f

[Hz]

50

63

80

100

125

160

200

250

315

400

500

630

800

1000

1250

1600

2000

2500 3150

4000

5000

R

[dB]

226

14,4

18.1

25,7

29,4

35.2

40.9

47,6

53,1

55,3

59,1

62.8

65,3

68.1

69,6

73.0

74,0

71.0

64,9

69,0

74,5

LABORATORY MEASUREMENT | FRAME WALL 7A

MEASUREMENT OF AIRBORNE SOUND INSULATION EVALUATION INDEX REFERENCE STANDARD: ISO 10140-2 AND EN ISO 717-1

WALL

Surface = 10,16 m² Surface mass = 34,4 kg/m² Receiving room volume = 60,6 m³

 Plasterboard (thickness: 12,5 mm); (720 kg/m³); (9 kg/m²)
SILENT FLOOR PUR - SILFLOORPUR10 (thickness: 10 mm)
Timber frame (thickness: 170 mm) timber struts 60 x 140 mm - spacing 600 mm

2x rock wool (thickness: 60mm), (70 kg/m³) OSB (thickness: 15 mm), (550 kg/m³)

AIRBORNE SOUND INSULATION

Testing laboratory: Building Physics Lab | Libera Università di Bolzano. Test protocol: Pr. 2022-rothoLATE-R13a. NOTES:

⁽¹⁾ Increase due to the addition of layers no. 1 and no. 2.

LABORATORY MEASUREMENT | FRAME WALL 7B

MEASUREMENT OF AIRBORNE SOUND INSULATION EVALUATION INDEX REFERENCE STANDARD: ISO 10140-2 AND EN ISO 717-1

receiving room

WALL

Surface = 10,16 m² Surface mass = 44,5 kg/m² Receiving room volume = 60,6 m³

 Plasterboard (thickness: 12,5 mm); (720 kg/m³) (9 kg/m²)
SILENT FLOOR PUR - SILFLOORPUR10 (thickness: 10 mm)
Timber frame (thickness: 170 mm) timber struts 60 x 140 mm - spacing 600 mm; 2x rock wool (thickness: 60mm), (70 kg/m³) OSB (thickness: 15 mm), (550 kg/m³)

(4) SILENT FLOOR PUR - SILFLOORPUR10 (thickness: 10 mm)

(5) Plasterboard (thickness: 12,5 mm); (720 kg/m³) (9 kg/m²)

AIRBORNE SOUND INSULATION

Testing laboratory: Building Physics Lab | Libera Università di Bolzano.

NOTES:

⁽¹⁾ Increase due to the addition of layers no. 1 and no. 2.

Test protocol: Pr. 2022-rothoLATE-R13b.

ON SITE MEASUREMENTS

COMMERCIAL BUILDING

Atlanta (USA)

The newly constructed building boasts office space, restaurants, shops, a hotel and art studios. It is a very innovative project that also uses TIM-BER as a structural material. To improve the acoustic performance of the floors, SILENT FLOOR PUR was used and ALADIN was used to reduce lateral transmission.

description	commercial building covering more than 300000 sq ft
type of structure	mixed
location	Atlanta (Georgia, USA)
products	SILENT FLOOR PUR, ALADIN

SILFLOORPUR15

TECHNICAL DATA

Properties	standard	value
Surface mass m	-	1,4 kg/m ²
Density p	-	90 kg/m ³
Apparent dynamic stiffness s' _t	EN 29052-1	8,8 MN/m ³
Dynamic stiffness s'	EN 29052-1	8,8 MN/m ³
Theoretical estimate of impact sound pressure level attenuation $\Delta L_w^{(1)}$	ISO 12354-2	34,6 dB
System resonance frequency f ₀ ⁽²⁾	ISO 12354-2	42,5 Hz
Impact sound pressure level attenuation $\Delta L_w^{(3)}$	ISO 10140-3	23 dB
Thermal resistance R _t	-	0,52 m ² K/W
Resistance to airflow r	ISO 9053	< 10,0 kPa·s·m ⁻²
Compressibility class	EN 12431	CP2
CREEP Viscous sliding under compression X _{ct} (1,5 kPa)	EN 1606	7,50 %
Compression deformation stress	ISO 3386-1	17 kPa
Thermal conductivity λ	-	0,035 W/m·K
Specific heat c	-	1800 J/kg·K
Water vapour transmission Sd	-	> 100 m
Reaction to fire	EN 13501-1	class F
VOC emission classification	French decree no. 2011-321	A+

 ${}^{(1)}\Delta L_{W}{=}$ (13 lg(m'))-(14,2 lg(s'))+20,8 [dB] con m'= 125 kg/m².

 $^{(2)}f_0 = 160 \sqrt{(s'/m')} \text{ con } m' = 125 \text{ kg/m}^2.$

⁽³⁾Measured in the laboratory on 200 mm CLT floor. See the manual for more information on configuration.

EN ISO 12354-2 ANNEX C | ESTIMATE ΔL_W (FORMULA C.4) E ΔL (FORMULA C.1)

The following tables show how the attenuation in dB ($\Delta L_W \in \Delta L$) of SILFLOORPUR15 varies as the load m' (i.e., the surface mass of the layers with which SILFLOORPUR15 is loaded) changes.

SILFLOORPUR15

	s't or s'	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8	[MN/m ³]
	load m'	50	75	100	125	150	175	200	225	250	275	300	[kg/m ²]
	ΔL_w	29,5	31,8	33,4	34,6	35,7	36,5	37,3	38,0	38,6	39,1	39,6	[dB]
	f ₀	67,1	54,8	47,5	42,5	38,8	35,9	33,6	31,6	30,0	28,6	27,4	[Hz]
ΔL in frequency													
[Hz]	100	5,2	7,8	9,7	11,2	12,4	13,4	14,2	15,0	15,7	16,3	16,9	[dB]
[Hz]	125	8,1	10,7	12,6	14,1	15,3	16,3	17,1	17,9	18,6	19,2	19,8	[dB]
[Hz]	160	11,3	14,0	15,8	17,3	18,5	19,5	20,3	21,1	21,8	22,4	23,0	[dB]
[Hz]	200	14,2	16,9	18,7	20,2	21,4	22,4	23,3	24,0	24,7	25,3	25,9	[dB]
[Hz]	250	17,1	19,8	21,6	23,1	24,3	25,3	26,2	26,9	27,6	28,2	28,8	[dB]
[Hz]	315	20,1	22,8	24,7	26,1	27,3	28,3	29,2	29,9	30,6	31,2	31,8	[dB]
[Hz]	400	23,3	25,9	27,8	29,2	30,4	31,4	32,3	33,1	33,7	34,4	34,9	[dB]
[Hz]	500	26,2	28,8	30,7	32,1	33,3	34,3	35,2	36,0	36,6	37,3	37,8	[dB]
[Hz]	630	29,2	31,8	33,7	35,1	36,3	37,3	38,2	39,0	39,7	40,3	40,8	[dB]
[Hz]	800	32,3	34,9	36,8	38,3	39,4	40,4	41,3	42,1	42,8	43,4	44,0	[dB]
[Hz]	1000	35,2	37,8	39,7	41,2	42,4	43,4	44,2	45,0	45,7	46,3	46,9	[dB]
[Hz]	1250	38,1	40,7	42,6	44,1	45,3	46,3	47,1	47,9	48,6	49,2	49,8	[dB]
[Hz]	1600	41,3	44,0	45,8	47,3	48,5	49,5	50,3	51,1	51,8	52,4	53,0	[dB]
[Hz]	2000	44,2	46,9	48,7	50,2	51,4	52,4	53,3	54,0	54,7	55,3	55,9	[dB]
[Hz]	2500	47,1	49,8	51,6	53,1	54,3	55,3	56,2	56,9	57,6	58,2	58,8	[dB]
[Hz]	3150	50,1	52,8	54,7	56,1	57,3	58,3	59,2	59,9	60,6	61,2	61,8	[dB]

EN ISO 12354-2 Annex C - formula C.4

$$\Box \Delta L_{w} = \left(13 \text{ lg}(m')\right) - \left(14,2 \text{ lg}(s')\right) + 20,8 \text{ dB}$$

EN ISO 12354-2 Annex C - formula C.1

 $\Delta L = \left(30 \text{ lg } \frac{\text{f}}{\text{f}_0}\right) \text{dB}$

EN ISO 12354-2 Annex C - formula C.2

$$f_0 = 160 \sqrt{\frac{s'}{m'}}$$

MEASUREMENT OF THE EVALUATION INDEX OF THE REDUCTION OF THE IMPACT SOUND PRESSURE LEVEL REFERENCE STANDARD: ISO 10140-3 AND EN ISO 717-2

FLOOR SLAB

Surface = 13,71 m² Surface mass = 215,7 kg/m² Receiving room volume = 60,1 m³

Concrete screed (thickness: 50 mm); (2600 kg/m³); (130 kg/m²)
SILENT FLOOR PUR - SILFLOORPUR15 (thickness: 15 mm)
CLT 5 layers (thickness: 200 mm); (420 kg/m³); (84 kg/m²)

■ IMPACT SOUND INSULATION

Testing laboratory: Building Physics Lab | Libera Università di Bolzano. Test protocol: Pr. 2022-rothoLATE-L6. NOTES:

 $^{(1)}$ Decrease due to the addition of layers no. 1 and no. 2. $^{(2)}$ Increase due to the addition of layers no. 1 and no. 2.

MEASUREMENT OF THE EVALUATION INDEX OF THE REDUCTION OF THE IMPACT SOUND PRESSURE LEVEL RUBBER BALL METHOD | REFERENCE STANDARD: ISO 16283-2

FLOOR SLAB

 $\begin{array}{l} \mbox{Surface} = 13,71\ m^2 \\ \mbox{Surface}\ mass = 215,7\ kg/m^2 \\ \mbox{Receiving room volume} = 60,1\ m^3 \end{array}$

Concrete screed (thickness: 50 mm); (2600 kg/m³); (130 kg/m²)
SILENT FLOOR PUR - SILFLOORPUR15 (thickness: 15 mm)
CLT 5 layers (thickness: 200 mm); (420 kg/m³); (84 kg/m²)

■ IMPACT SOUND INSULATION

f	L _{i,F,max}
[Hz]	[dB]
50	78,8
63	75,9
80	67,7
100	72,8
125	68,9
160	62,3
200	62,8
250	56,3
315	51,9
400	47,2
500	42,5
630	39,4

Testing laboratory: Building Physics Lab | Libera Università di Bolzano. Test protocol: Pr. 2022-rothoLATE-L6.

MEASUREMENT OF THE EVALUATION INDEX OF THE REDUCTION OF THE IMPACT SOUND PRESSURE LEVEL REFERENCE STANDARD: ISO 10140-3 AND EN ISO 717-2

FLOOR SLAB

Surface = 13,71 m² Surface mass = 217,3 kg/m² Receiving room volume = 60,1 m³

Concrete screed (thickness: 50 mm); (2600 kg/m³); (130 kg/m²)
2x SILENT FLOOR PUR - SILFLOORPUR15 (thickness: 15 mm)
CLT 5 layers (thickness: 200 mm); (420 kg/m³); (84 kg/m²)

■ IMPACT SOUND INSULATION

Testing laboratory: Building Physics Lab | Libera Università di Bolzano. Test protocol: Pr. 2022-rothoLATE-L6.

NOTES:

⁽¹⁾ Decrease due to the addition of layers no. 1 and no. 2. ⁽²⁾ Increase due to the addition of layers no. 1 and no. 2.

MEASUREMENT OF THE EVALUATION INDEX OF THE REDUCTION OF THE IMPACT SOUND PRESSURE LEVEL RUBBER BALL METHOD | REFERENCE STANDARD: ISO 16283-2

FLOOR SLAB

 $\begin{array}{l} \mbox{Surface} = 13,71\ m^2 \\ \mbox{Surface}\ mass = 217,3\ kg/m^2 \\ \mbox{Receiving room volume} = 60,1\ m^3 \end{array}$

■ IMPACT SOUND INSULATION

f	L _{i, F, max}
[Hz]	[dB]
50	81,5
63	79,0
80	68,2
100	65,2
125	63,5
160	57,8
200	59,6
250	52,9
315	48,5
400	44,3
500	40,7
630	38,0

Testing laboratory: Building Physics Lab | Libera Università di Bolzano. Test protocol: Pr. 2022-rothoLATE-L6.

CERTAIN COLLABORATIONS ARE BORN TO LAST

CTC is the connector for timber-to-concrete floors.

CE certified, it allows to connect a 5 or 6 cm reinforced concrete slab to the timber beams of the underneath floor, obtaining a new timber-concrete structure with extraordinary strength and excellent static and acoustic performance. It is an approved self-drilling, reversible, fast and minimally invasive system.

Scan the QR code and discover the technical features of CTC connector

Solutions for Building Technology

f in 🖸

www.rothoblaas.com

SILFLOORPUR20

TECHNICAL DATA

Properties	standard	value
Surface mass m	-	1,8 kg/m ²
Density p	-	90 kg/m ³
Apparent dynamic stiffness s' _t	EN 29052-1	7,4 MN/m ³
Dynamic stiffness s'	EN 29052-1	7,4 MN/m ³
Theoretical estimate of impact sound pressure level attenuation $\Delta L_w^{(1)}$	ISO 12354-2	35,7 dB
System resonance frequency f ₀ ⁽²⁾	ISO 12354-2	38,9 Hz
Impact sound pressure level attenuation $\Delta L_w^{(3)}$	ISO 10140-3	25 dB
Thermal resistance R _t	-	0,92 m ² K/W
Resistance to airflow r	ISO 9053	< 10,0 kPa·s·m ⁻²
Compressibility class	EN 12431	CP2
CREEP Viscous sliding under compression X_{ct} (1,5 kPa)	EN 1606	7,50 %
Compression deformation stress	ISO 3386-1	17 kPa
Thermal conductivity λ	-	0,035 W/m·K
Specific heat c	-	1800 J/kg·K
Water vapour transmission Sd	-	> 100 m
Reaction to fire	EN 13501-1	class F
VOC emission classification	French decree no. 2011-321	A+

 ${}^{(1)}\Delta L_{W}{=}$ (13 lg(m'))-(14,2 lg(s'))+20,8 [dB] con m'= 125 kg/m².

 $^{(2)}f_0 = 160 \sqrt{(s'/m')} \text{ con } m' = 125 \text{ kg/m}^2.$

⁽³⁾Measured in the laboratory on 200 mm CLT floor. See the manual for more information on configuration.

EN ISO 12354-2 ANNEX C | ESTIMATE ΔL_W (FORMULA C.4) E ΔL (FORMULA C.1)

The following tables show how the attenuation in dB ($\Delta L_W \in \Delta L$) of SILFLOORPUR20 varies as the load m' (i.e., the surface mass of the layers with which SILFLOORPUR20 is loaded) changes.

SILFLOORPUR20

	s't or s'	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	12,5	[MN/m ³]
	load m'	50	75	100	125	150	175	200	225	250	275	300	[kg/m ²]
	ΔL_w	27,3	29,6	31,2	32,5	33,5	34,4	35,1	35,8	36,4	36,9	37,4	[dB]
	f ₀	80,0	65,3	56,6	50,6	46,2	42,8	40,0	37,7	35,8	34,1	32,7	[Hz]
ΔL in frequency													
[Hz]	100	2,9	5,5	7,4	8,9	10,1	11,1	11,9	12,7	13,4	14,0	14,6	[dB]
[Hz]	125	5,8	8,5	10,3	11,8	13,0	14,0	14,8	15,6	16,3	16,9	17,5	[dB]
[Hz]	160	9,0	11,7	13,5	15,0	16,2	17,2	18,1	18,8	19,5	20,1	20,7	[dB]
[Hz]	200	11,9	14,6	16,5	17,9	19,1	20,1	21,0	21,7	22,4	23,0	23,6	[dB]
[Hz]	250	14,8	17,5	19,4	20,8	22,0	23,0	23,9	24,6	25,3	26,0	26,5	[dB]
[Hz]	315	17,9	20,5	22,4	23,8	25,0	26,0	26,9	27,7	28,3	29,0	29,5	[dB]
[Hz]	400	21,0	23,6	25,5	26,9	28,1	29,1	30,0	30,8	31,5	32,1	32,6	[dB]
[Hz]	500	23,9	26,5	28,4	29,8	31,0	32,0	32,9	33,7	34,4	35,0	35,5	[dB]
[Hz]	630	26,9	29,5	31,4	32,9	34,0	35,0	35,9	36,7	37,4	38,0	38,6	[dB]
[Hz]	800	30,0	32,6	34,5	36,0	37,2	38,2	39,0	39,8	40,5	41,1	41,7	[dB]
[Hz]	1000	32,9	35,5	37,4	38,9	40,1	41,1	41,9	42,7	43,4	44,0	44,6	[dB]
[Hz]	1250	35,8	38,5	40,3	41,8	43,0	44,0	44,8	45,6	46,3	46,9	47,5	[dB]
[Hz]	1600	39,0	41,7	43,5	45,0	46,2	47,2	48,1	48,8	49,5	50,1	50,7	[dB]
[Hz]	2000	41,9	44,6	46,5	47,9	49,1	50,1	51,0	51,7	52,4	53,0	53,6	[dB]
[Hz]	2500	44,8	47,5	49,4	50,8	52,0	53,0	53,9	54,6	55,3	56,0	56,5	[dB]
[Hz]	3150	47,9	50,5	52,4	53,8	55,0	56,0	56,9	57.7	58,3	59,0	59,5	[dB]

EN ISO 12354-2 Annex C - formula C.4

$$\Delta L_{w} = (13 lg(m')) - (14,2 lg(s')) + 20,8 dB$$

EN ISO 12354-2 Annex C - formula C.1

 $\Delta L = \left(30 \text{ lg } \frac{f}{f_0}\right) dB$

EN ISO 12354-2 Annex C - formula C.2

f₀ = 160 $\sqrt{\frac{s'}{m'}}$

MEASUREMENT OF THE EVALUATION INDEX OF THE REDUCTION OF THE IMPACT SOUND PRESSURE LEVEL REFERENCE STANDARD: ISO 10140-3 AND EN ISO 717-2

FLOOR SLAB

Surface = 13,71 m² Surface mass = 216,2 kg/m² Receiving room volume = 60,1 m³

Concrete screed (thickness: 50 mm); (2600 kg/m³); (130 kg/m²)
SILENT FLOOR PUR - SILFLOORPUR20 (thickness: 20 mm)
CLT 5 layers (thickness: 200 mm); (420 kg/m³); (84 kg/m²)

IMPACT SOUND INSULATION

Testing laboratory: Building Physics Lab | Libera Università di Bolzano. Test protocol: Pr. 2022-rothoLATE-L1.

NOTES:

 $^{(1)}$ Decrease due to the addition of layers no. 1 and no. 2. $^{(2)}$ Increase due to the addition of layers no. 1 and no. 2.

MEASUREMENT OF THE EVALUATION INDEX OF THE REDUCTION OF THE IMPACT SOUND PRESSURE LEVEL RUBBER BALL METHOD | REFERENCE STANDARD: ISO 16283-2

FLOOR SLAB

 $\begin{array}{l} \mbox{Surface} = 13,71\ m^2 \\ \mbox{Surface}\ mass = 216,2\ kg/m^2 \\ \mbox{Receiving room volume} = 60,1\ m^3 \end{array}$

Concrete screed (thickness: 50 mm); (2600 kg/m³); (130 kg/m²)
SILENT FLOOR PUR - SILFLOORPUR20 (thickness: 20 mm)
CLT 5 layers (thickness: 200 mm); (420 kg/m³); (84 kg/m²)

■ IMPACT SOUND INSULATION

f	L _{i,F,max}
[Hz]	[dB]
50	79,8
63	77,0
80	68,4
100	67,0
125	67,1
160	58,6
200	61,2
250	54,2
315	50,0
400	45,7
500	40,7
630	38,0

Testing laboratory: Building Physics Lab | Libera Università di Bolzano. Test protocol: Pr. 2022-rothoLATE-L1.

Rotho Blaas Srl does not guarantee the legal and/or design conformity of data and calculations, as Rotho Blass provides indicative tools such as technical-commercial service within the sales activity.

Rotho Blaas Srl follows a policy of continuous development of its products, thereby reserving the right to modify their characteristics, technical specifications and other documentation without notice.

The user or the designer are responsible to verify, at each use, the conformity of the data to the regulations in force and to the project. The ultimate responsibility for choosing the appropriate product for a specific application lies with the user/designer.

The values resulting from "experimental investigations" are based on the actual test results and valid only for the test conditions specified.

Rotho Blaas Srl does not guarantee and in no case can be held responsible for damages, losses and costs or other consequences, for any reason (warranty for defects, warranty for malfunction, product or legal responsibility, etc.) deriving from the use or inability to use the products for any

purpose; from non-conforming use of the product;

Rotho Blaas Srl is not liable in any way for any errors in printing and/or typing. In the event of differences between the contents of the catalogue versions in the various languages, the Italian text is binding and takes precedence with respect to the translations.

Pictures are partially completed with accessories not included. Images are for illustration purposes only. Packaged quantities may vary.

This catalogue is private property of Rotho Blaas Srl and may not be copied, reproduced or published, totally or in part, without prior written consent. All violations will be prosecuted according to law. The general purchase conditions of Rotho Blaas Srl are available on the website www.rothoblaas. com.

All rights reserved. Copyright © 2022 by Rotho Blaas Srl All renderings © Rotho Blaas Srl

SILENTFLOOR PE TECHNICAL MANUAL

Solutions for Building Technology

CONTENTS

ACOUSTIC PROBLEMS OF FLOORS	206
SILENT FLOOR PE	208
SILFLOORPE6	210
LABORATORY MEASUREMENT CLT FLOOR 1	211
LABORATORY MEASUREMENT CLT FLOOR 1	212

ACOUSTIC PROBLEMS OF FLOORS

WHAT IS IMPACT NOISE?

When it comes to floors, impact noise is the main acoustic problem because it constantly affects them. When a body impacts on the floor structure, the noise quickly spreads throughout the building either by air, affecting the nearest rooms, or by structure, propagating into the most distant rooms.

WHAT IS AIRBORNE NOISE?

Airborne noise is generated in the air and, after an initial airborne phase, is transported both by air and by structure. This is a problem that affects both walls and floors, but if we are talking about floors, the most important problem is certainly impact noise.

HERE IS THE SOLUTION

In order to be able to minimise the discomfort caused by impact noise, a stratigraphic package should be designed consisting of layers of different materials that are disconnected from each other and are able to dissipate the energy transmitted by the impact.

MASS-SPRING-MASS SYSTEM

A floating screed system such as the one shown in the images below can be schematised with a mass-spring-mass system, in which the structural floor represents the mass, the impact-absorbing product is equivalent to the spring, and the upper screed with the floor constitutes the second mass of the system. In this context, "resilient layer" is defined as the element with the spring function characterised by its own *dynamic stiffness s*'.

HOW IS THE IMPACT NOISE LEVEL MEASURED?

The impact noise level is a measure of the disturbance perceived in a room when an impact noise source is activated in the upper room. It can be measured both on site and in the laboratory. Clearly, ideal conditions exist in the laboratory for the effects of lateral transmission to be neglected, as the laboratory itself is constructed so that the walls are decoupled from the ceiling.

TAPPING MACHINE method

The TAPPING MACHINE is used to simulate "light" and "hard" impacts, such as walking with heeled shoes or the impact caused by falling objects.

RUBBER BALL method

The RUBBER BALL is used to simulate "soft" and "heavy" impacts, such as a barefoot walk or a child jumping.

HOW TO CHOOSE THE BEST PRODUCT

DYNAMIC STIFFNESS – s'

Expressed in MN/m³, it is measured according to EN 29052-1 and expresses the deformation capacity of a material that is subjected to a dynamic stress. Consequently, it indicates the ability to dampen the vibrations generated by an impact noise.

The measurement method involves, first, measuring the *apparent dynamic stiffness* s'_t of the material and then correcting it, if necessary, to obtain the *real dynamic stiffness* s'. Dynamic stiffness depends in fact on the *flow resistivity r*, which is measured in the lateral direction of the sample. If the material has specific flow resistivity values, the apparent dynamic stiffness must be corrected by adding the contribution of the gas contained within the material: air.

VISCOUS SLIDING UNDER COMPRESSION - CREEP

Expressed as a percentage, it is measured according to EN 1606 and represents the long-term deformation of a material under constant load to be simulated. The measurement in the laboratory must be carried out over a period of at least 90 days.

COMPRESSIBILITY - c

The compressibility class expresses the behaviour of a material while subjected to screed loading. During measurement, the product is subjected to different loads and its thickness is measured. The compressibility measurement is carried out to understand what loads the underscreed product can withstand, in order to avoid cracking and splitting of screeds.

CORRECT INSTALLATION

The technological solution of the floating screed is one of the most widely used and one of the most effective, but in order to achieve satisfactory results it is important that the system is designed and implemented correctly.

The resilient layer must be continuous becauseItany gap would represent an acoustic bridge.sWhen installing underscreed mats, care must be
taken not to create discontinuities.o

It is important to use the SILENT EDGE perimeter strip to ensure that the resilient layer is continuous around the entire perimeter of the room. The SILENT EDGE should only be trimmed after the floor has been installed and grouted.

The skirting board must be installed after the SILENT EDGE has been cut, ensuring that it is always suitably raised from the floor.

IIC vs L_w

IIC stands for **Impact Insulation Class** and is the value obtained by subtracting the noise level measured in the receiving room from the noise level measured in the source room. Impact Insulation Class, sometimes referred to as Impact Isolation Class, measures the resistance of the floor construction assembly against the propagation of impact-generated noise.

SILENT FLOOR PE

RESILIENT UNDERSCREED MEMBRANE MADE OF CLOSED CELL PE

CLOSED CELL

Thanks to the grid of closed cell polyethylene, the foil will not permanently deform and remains effective over time.

COST-PERFORMANCE

Composition of the mixture optimised to provide both good performance and low cost.

VERSATILE

This product is a versatile solution in any application where a light and flexible resilient product is required.

closed cell expanded polyethylene

CODES AND DIMENSIONS

CODE	н	L	thickness	А	
	[m]	[m]	[mm]	[m ²]	
SILFLOORPE6	1,55	50	5	77,5	4
SILFLOORPE10	1,30	50	10	65	2

SEVERAL USES

The format and composition offer various uses in the construction field, also as under floor.

STABLE

The grid of polyethylene foam is durable and does not suffer from issues associated with chemical actions or incompatibility of materials.

PRODUCT STRATIGRAPHY COMPARISON

thickness	thickness dynamic stiffness load estimate ΔL, according to formula C.4 of EN									
			10	15		20	25	30	35	40
		125 kg/m ²					24,9 dB			
5 mm	43 MN/m ³	200 kg/m ²					27,	5 dB		
		250 kg/m ²					2	8,8 dB		
		125 kg/m ²					25.2 d	3		
10 mm	41 MN/m ³	200 kg/m ²					27	8 dB		
		250 kg/m ²								
								29,1 dB		

SILFLOORPE6

TECHNICAL DATA

Properties	standard	value
Thickness	-	5 mm
Surface mass m	-	0,15 kg/m ²
Apparent dynamic stiffness s' _t	EN 29052-1	43 MN/m ³
Dynamic stiffness s'	EN 29052-1	43 MN/m ³
Theoretical estimate of impact sound pressure level attenuation $\Delta L_w^{(1)}$	ISO 12354-2	24,9 dB
System resonance frequency f ₀ ⁽²⁾	ISO 12354-2	93,8 Hz
Impact sound pressure level attenuation $\Delta L_w^{(3)}$	ISO 10140-3	19 dB
Thermal resistance R _t	-	0,13 m ² K/W
Water vapour transmission Sd	-	24,1 m
Water vapour resistance factor μ	EN 12086	5000
Density p	-	30 kg/m ³
Resistance to airflow r	ISO 9053	> 100.0 kPa·s·m ⁻²
Thermal conductivity λ	-	0,038 W/m·K
VOC emission classification	French decree no. 2011-321	A+

⁽¹⁾ $\Delta L_W = (13 lg(m')) - (14, 2 lg(s')) + 20, 8 [dB]$ with m' = 125 kg/m².

(2) $f_0 = 160 \sqrt{(s'/m')}$ with m'= 125 kg/m².

⁽³⁾ Measured in the laboratory on 200 mm CLT floor. See the manual for more information on configuration.

EN ISO 12354-2 ANNEX C | ESTIMATE ΔL_W (formula C.4) E ΔL (formula C.1)

The following tables show how the attenuation in dB ($\Delta L_W e \Delta L$) of SILFLOORPE6 varies as the load m' (i.e., the surface mass of the layers with which SILFLOORPE6 is loaded) changes.

SILFLOORPE6

	s't or s'	43	43	43	43	43	43	43	43	43	43	43	[MN/m ³]
	load m'	50	75	100	125	150	175	200	225	250	275	300	[kg/m ²]
ΔL _w		19,7	22,0	23,6	24,9	25,9	26,8	27,5	28,2	28,8	29,3	29,8	[dB]
f ₀		148,4	121,2	104,9	93,8	85,7	79,3	74,2	69,9	66,4	63,3	60,6	[Hz]
ΔL in frequency													
[Hz]	100	-5,1	-2,5	-0,6	0,8	2,0	3,0	3,9	4,7	5,3	6.0	6,5	[dB]
[Hz]	125	-2,2	0,4	2,3	3,7	4,9	5,9	6,8	7,6	8,3	8,9	9,4	[dB]
[Hz]	160	1,0	3,6	5,5	7,0	8,1	9,1	10,0	10,8	11,5	12,1	12,7	[dB]
[Hz]	200	3,9	6,5	8,4	9,9	11,0	12,1	12,9	13,7	14,4	15,0	15,6	[dB]
[Hz]	250	6,8	9,4	11,3	12,8	14,0	15,0	15,8	16,6	17,3	17,9	18,5	[dB]
[Hz]	315	9,8	12,4	14,3	15,8	17,0	18,0	18,8	19,6	20,3	20,9	21,5	[dB]
[Hz]	400	12,9	15,6	17,4	18,9	20,1	21,1	22,0	22,7	23,4	24,0	24,6	[dB]
[Hz]	500	15,8	18,5	20,3	21,8	23,0	24,0	24,9	25,6	26,3	26,9	27,5	[dB]
[Hz]	630	18,8	21,5	23,4	24,8	26,0	27,0	27,9	28,6	29,3	29,9	30,5	[dB]
[Hz]	800	22,0	24,6	26,5	27,9	29,1	30,1	31,0	31,7	32,4	33,1	33,6	[dB]
[Hz]	1000	24,9	27,5	29,4	30,8	32,0	33,0	33,9	34,7	35,3	36,0	36,5	[dB]
[Hz]	1250	27,8	30,4	32,3	33,7	34,9	35,9	36,8	37,6	38,3	38,9	39,4	[dB]
[Hz]	1600	31,0	33,6	35,5	37,0	38,1	39,1	40,0	40,8	41,5	42,1	42,7	[dB]
[Hz]	2000	33,9	36,5	38,4	39,9	41,0	42,1	42,9	43,7	44,4	45,0	45,6	[dB]
[Hz]	2500	36,8	39,4	41,3	42,8	44,0	45,0	45,8	46,6	47,3	47,9	48,5	[dB]
[Hz]	3150	39,8	42,4	44,3	45,8	47,0	48,0	48,8	49,6	50,3	50,9	51,5	[dB]

EN ISO 12354-2 Allegato C - formula C.4

$$\Delta L_{w} = (13 \, \lg(m')) - (14.2 \, \lg(s')) + 20.8 \, dB$$

EN ISO 12354-2 Allegato C - formula C.2

$$f_0 = 160 \sqrt{\frac{s'}{m'}}$$

 $\Delta L = \left(30 \text{ lg } \frac{\text{f}}{\text{f}_0}\right) \text{dB}$

MEASUREMENT OF THE EVALUATION INDEX OF THE REDUCTION OF THE IMPACT SOUND PRESSURE LEVEL REFERENCE STANDARD: ISO 10140-3 AND EN ISO 717-2

FLOOR SLAB

 $\label{eq:surface} \begin{array}{l} \mbox{Surface} = 13,71\ m^2 \\ \mbox{Surface}\ mass = 214,2\ kg/m^2 \\ \mbox{Receiving room volume} = 60,1\ m^3 \end{array}$

concrete screed (thickness: 50 mm); (2600 kg/m³); (130 kg/m²)
SILENT FLOOR PE - SILFLOORPE5 (thickness: 5 mm); (30 kg/m³); (0,15 kg/m²)
CLT 5 layers (thickness: 200 mm); (420 kg/m³); (84 kg/m²)

IMPACT SOUND INSULATION

 $L_{n,w}(C_l) = 67 (-3) dB$

IIC = **43**

 $\Delta L_{n,w} = -19 \text{ dB}^{(1)}$

 $\triangle IIC = +19^{(2)}$

NOTES:

Testing laboratory: Building Physics Lab | Libera Università di Bolzano. Test protocol: Pr. 2022-rothoLATE-L7.

Decrease due to the addition of layers no. 1 and no. 2.
Increase due to the addition of layers no. 1 and no. 2.

MEASUREMENT OF THE EVALUATION INDEX OF THE REDUCTION OF THE IMPACT SOUND PRESSURE LEVEL RUBBER BALL METHOD | REFERENCE STANDARD: ISO 16283-2

FLOOR SLAB

Surface = 13,71 m² Surface mass = 214,2 kg/m² Receiving room volume = 60,1 m³

concrete screed (thickness: 50 mm); (2600 kg/m³); (130 kg/m²)
SILENT FLOOR PE - SILFLOORPE5 (thickness: 5 mm); (30 kg/m³); (0,15 kg/m²)
CLT 5 layers (thickness: 200 mm); (420 kg/m³); (84 kg/m²)

IMPACT SOUND INSULATION

f	L _{i,F,max}							
[Hz]	[dB]							
50	75,8							
63	71,4							
80	61,7							
100	68,9							
125	67,2							
160	67,8							
200	68,9							
250	62,5							
315	58,5							
400	53,9							
500	48,5							
630	44,3							

L_{i,F,max}

Testing laboratory: Building Physics Lab | Libera Università di Bolzano. Test protocol: Pr. 2022-rothoLATE-L7.

SILFLOORPE10

TECHNICAL DATA

Properties	standard	value
Thickness	-	10 mm
Surface mass m	-	0,30 kg/m ²
Apparent dynamic stiffness s' _t	EN 29052-1	41 MN/m ³
Dynamic stiffness s'	EN 29052-1	41 MN/m ³
Theoretical estimate of impact sound pressure level attenuation $\Delta L_w^{(1)}$	ISO 12354-2	25,2 dB
System resonance frequency f ₀ ⁽²⁾	ISO 12354-2	91,6 Hz
Impact sound pressure level attenuation $\Delta L_w^{(3)}$	ISO 10140-3	-
Thermal resistance R _t	-	0,26 m ² K/W
Water vapour transmission Sd	-	48,2 m
Water vapour resistance factor μ	EN 12086	5000
Density p	-	30 kg/m ³
Resistance to airflow r	ISO 9053	>100.0 kPa·s·m ⁻²
Thermal conductivity λ	-	0,038 W/m·K
VOC emission classification	French decree no. 2011-321	A+

⁽¹⁾ ΔL_w = (13 lg(m'))-(14,2 lg(s'))+20,8 [dB] with m'= 125 kg/m².

(2) $f_0 = 160 \sqrt{(s'/m')}$ with m'= 125 kg/m².

⁽³⁾ Measured in the laboratory on 200 mm CLT floor. See the manual for more information on configuration.

EN ISO 12354-2 ANNEX C | ESTIMATE ΔL_W (formula C.4) E ΔL (formula C.1)

The following tables show how the attenuation in dB ($\Delta L_W e \Delta L$) of SILFLOORPE10 varies as the load m' (i.e., the surface mass of the layers with which SILFLOORPE10 is loaded) changes.

SILFLOORPE10

	s't or s'	41	41	41	41	41	41	41	41	41	41	41	[MN/m ³]
	load m'	50	75	100	125	150	175	200	225	250	275	300	[kg/m ²]
	ΔL_{w}	20,0	22,3	23,9	25,2	26,2	27,1	27,8	28,5	29,1	29,6	30,1	[dB]
f ₀		144,9	118,3	102,4	91,6	83,7	77,4	72,4	68,3	64,8	61,8	59,1	[Hz]
ΔL in frequency													
[Hz]	100	-4,8	-2,2	-0,3	1,1	2,3	3,3	4,2	5,0	5,7	6,3	6,8	[dB]
[Hz]	125	-1,9	0,7	2,6	4,0	5,2	6,2	7,1	7,9	8,6	9,2	9,7	[dB]
[Hz]	160	1,3	3,9	5,8	7,3	8,4	9,5	10,3	11,1	11,8	12,4	13,0	[dB]
[Hz]	200	4,2	6,8	8,7	10,2	11,4	12,4	13,2	14,0	14,7	15,3	15,9	[dB]
[Hz]	250	7,1	9,7	11,6	13,1	14,3	15,3	16,1	16,9	17,6	18,2	18,8	[dB]
[Hz]	315	10,1	12,8	14,6	16,1	17,3	18,3	19,1	19,9	20,6	21,2	21,8	[dB]
[Hz]	400	13,2	15,9	17,7	19,2	20,4	21,4	22,3	23,0	23,7	24,3	24,9	[dB]
[Hz]	500	16,1	18,8	20,7	22,1	23,3	24,3	25,2	25,9	26,6	27,2	27,8	[dB]
[Hz]	630	19,1	21,8	23,7	25,1	26,3	27,3	28,2	28,9	29,6	30,3	30,8	[dB]
[Hz]	800	22,3	24,9	26,8	28,2	29,4	30,4	31,3	32,1	32,7	33,4	33,9	[dB]
[Hz]	1000	25,2	27,8	29,7	31,1	32,3	33,3	34,2	35,0	35,7	36,3	36,8	[dB]
[Hz]	1250	28,1	30,7	32,6	34,0	35,2	36,2	37,1	37,9	38,6	39,2	39,7	[dB]
[Hz]	1600	31,3	33,9	35,8	37,3	38,4	39,5	40,3	41,1	41,8	42,4	43,0	[dB]
[Hz]	2000	34,2	36,8	38,7	40,2	41,4	42,4	43.2	44,0	44,7	45,3	45,9	[dB]
[Hz]	2500	37,1	39,7	41,6	43,1	44,3	45,3	46,1	46,9	47,6	48,2	48,8	[dB]
[Hz]	3150	40,1	42,8	44,6	46,1	47,3	48,3	49,1	49,9	50,6	51,2	51,8	[dB]

EN ISO 12354-2 Allegato C - formula C.4

$$\Box \Delta L_{w} = \left(13 \text{ lg}(m')\right) - \left(14,2 \text{ lg}(s')\right) + 20,8 \text{ dB}$$

EN ISO 12354-2 Allegato C - formula C.2 $f_0 = 160 \sqrt{\frac{s'}{m'}}$ EN ISO 12354-2 Allegato C - formula C.1

$$\Box \Delta L = \left(30 \text{ lg } \frac{\text{f}}{\text{f}_0} \right) \text{dB}$$

Rotho Blaas Srl does not guarantee the legal and/or design conformity of data and calculations, as Rotho Blass provides indicative tools such as technical-commercial service within the sales activity.

Rotho Blaas Srl follows a policy of continuous development of its products, thereby reserving the right to modify their characteristics, technical specifications and other documentation without notice.

The user or the designer are responsible to verify, at each use, the conformity of the data to the regulations in force and to the project. The ultimate responsibility for choosing the appropriate product for a specific application lies with the user/designer.

The values resulting from "experimental investigations" are based on the actual test results and valid only for the test conditions specified.

Rotho Blaas Srl does not guarantee and in no case can be held responsible for damages, losses and costs or other consequences, for any reason (warranty for defects, warranty for malfunction, product or legal responsibility, etc.) deriving from the use or inability to use the products for any europeries for any europeries.

product or legal responsibility, etc.) deriving from the use or inability to use the products for any purpose; from non-conforming use of the product; Rotho Blaas Srl is not liable in any way for any errors in printing and/or typing. In the event of

Rotho Blaas Srl is not liable in any way for any errors in printing and/or typing. In the event of differences between the contents of the catalogue versions in the various languages, the Italian text is binding and takes precedence with respect to the translations.

Pictures are partially completed with accessories not included. Images are for illustration purposes only. Packaged quantities may vary.

This catalogue is private property of Rotho Blaas Srl and may not be copied, reproduced or published, totally or in part, without prior written consent. All violations will be prosecuted according to law.

The general purchase conditions of Rotho Blaas Srl are available on the website www.rothoblaas.com.

Rotho Blaas Srl

